	12th Science- : Maths Vectors		DATE:
		TIME: 1 Hours	
Orality Chadren			MARKS: 25
Only way to fulfill your dreams		SEAT NO:	
Note:-	son		

2. Numbers on the right indicate full marks.

Section A

Q.1 Select and write the correct answer.

^{1.} If $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosines of a line then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is

A) 1	B) 2
C) 3	D) 4

2. If l, m, n are direction cosines of a line then $l\hat{i} + m\hat{j} + n\hat{k}$ is_____

A) null vector	B) the unit vector along the line
C) any vector along the line	D) a vector perpendicular to the line

Q.2 Answer the following.

- 1. If $\overline{OA} = \overline{a}$ and $\overline{OB} = \overline{b}$ then show that the vector along the angle bisector of angle AOB is given by $\overline{d} = \lambda \left(\frac{\overline{a}}{|\overline{a}|} + \frac{\overline{a}}{|\overline{b}|} \right)$.
- 2. Prove that $(\bar{a} \times \bar{b}) \cdot (\bar{c} \times \bar{d}) \begin{vmatrix} \bar{a} \cdot \bar{c} & \bar{b} \cdot \bar{c} \\ \bar{a} \cdot \bar{d} & \bar{b} \cdot \bar{d} \end{vmatrix}$
- 3. Determine whether $\bar{a} = -9\hat{i} + 6\hat{j} + 15\hat{k}$, $\bar{b} = 6\hat{i} 4\hat{j} 10\hat{k}$ are orthogonal, parallel or neither.

Section B Attempt any Four

- Q.3 If \hat{p} , \hat{q} and \hat{r} are unit vectors, find i) \hat{p} . \hat{q} ii) \hat{p} . \hat{r}
- Q.4 Using properties of scalar triple product, prove that $\begin{bmatrix} \bar{a} + \bar{b} & \bar{b} + \bar{c} & \bar{c} + \bar{a} \end{bmatrix} = 2 \begin{bmatrix} \bar{a} & \bar{b} & \bar{c} \end{bmatrix}$
- Q.5 The position vectors of three consecutive vertices of a parallelogram are $\hat{i} + \hat{j} + \hat{k}$, (2) $\hat{i} + 3\hat{j} + 5\hat{k}$ and $7\hat{i} + 9\hat{j} + 11\hat{k}$. Find the position vector of the fourth vertex.
- Q.6 Find $|\bar{u} \times \bar{v}|$ if $|\bar{u}| = 10$, $|\bar{v}| = 2$, $\bar{u} \cdot \bar{v} = 12$ (2)
- Q.7 Show that $\bar{a} \times (\bar{b} \times \bar{c}) + \bar{b} \times (\bar{c} \times \bar{a}) + \bar{c} \times (\bar{a} \times \bar{b}) = 0$ (2)
- Q.8 Prove that a quadrilateral is a parallelogram if and only if its diagonals bisect each other. (2)

Section C Attempt any Two

(3)

(2)

(2)

(4)

Q.9	Find the length of the side of the triangle and also determine the type of a triangle. $L(3, -2, -3)$,	(3)
	M(7, 0,1), N (1, 2, 1)	

- Q.10 Find the angle P of the triangle whose vertices are P(0, -1, -2), Q(3, 1, 4) and R(5, 7, 1) (3)
- Q.11 Prove by vector method that the angle subtended on semicircle is a right angle. (3)

Section D Attempt any One

(4)

- Q.12 Find the component form of if \bar{a} if
 - (i) It lies in YZ plane and makes 60° with positive Y-axis and $|ar{a}|=4$
 - (ii) It lies in XZ plane and makes 45° with positive Z-axis and $|\bar{a}| = 10$
- Q.13 If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B **(4)** to the line joining the origin and point A.