Quality Checkers Only way to fulfill your dreams	12th Science : Physics Oscillations,	DATE: TIME: 1 hr MARKS: 25
	SEAT NO:	
Note:- 1. All Questions a 2. Numbers on th	re compulsory. e right indicate full marks.	

Section A

Q.1 Select and Write the correct answer.

1. The length of second's pendulum on the surface of earth is nearly 1 m. Its length on the surface of moon should be

[Given: acceleration due to gravity (g) on moon is 1/6th of that on the earth's surface]

A)
$$\frac{1}{6}m$$
 B) 6m
C) $\frac{1}{36}m$ D) $\frac{1}{\sqrt{6}}m$

2. A particle performs linear S.H.M. starting from the mean position. Its amplitude is A and time period is T. At the instance when its speed is half the maximum speed, its displacement x is

A)
$$\frac{\sqrt{3}}{2}A$$
 B) $\frac{2}{\sqrt{3}}A$
C) $\frac{A}{2}$ D) $\frac{1}{\sqrt{2}}A$

3.

For particles A and B executing SHM, the equation for displacement is given by, $y_1 = 0.1 \sin \left(\frac{1}{2} + \frac{1}{2} +$

and $y_2 = 0.1 \cos \pi t$. The phase difference between velocity of particle A with respect to that of I

A) $-\frac{\pi}{3}$	B) $\frac{\pi}{4}$
C) $\frac{-\pi}{6}$	D) $\frac{4}{3}$

4. Which of the equation given below represents a S.H.M.? acceleration = (Here, k, ko, k₁ are force constants)

A) -k(x + a) B) k(x + a)C) kx D) $-k_0x + k_1x^2$

Q.2 Answer the following.

- 1. What happen if Resonance frequency is equal to natural frequency ($\omega = \omega_n$)?
- 2. On which factor total energy of S.H.M. depends?
- 3. Define : Second Pendulum

Section B Attempt any Four

(3)

(4)

Q.3	Draw a neat and labelled diagram of a simple pendulum showing radial and tangential component of a right 'mg' of a bob.	(2)		
Q.4	What do you know about restoring force?	(2)		
Q.5	Define force constant. Write its formulae unit and dimensions.	(2)		
Q.6	The bob of a simple pendulum is hollow sphere full of water. If a fine hole is made at the bottom of the sphere, how will time period of the pendulum be affected?	(2)		
Q.7	Define frequency and hence, derive expression for frequency.	(2)		
Q.8	Mention the SI unit and dimensional formulae of force constant.	(2)		
Section C Attempt any Two				
Q.9	Explain damped oscillations.	(3)		
Q.10	Obtain expression for displacement starting from mean and extreme position.	(3)		
Q.11	Draw neat diagram to show graphical representation of K.E. , Pt. and T.E. in linear S.H.M.	(3)		
Section D Attempt any One				
Q.12	Mention the SI unit, CGS unit and dimensional formula of damping constant.	(4)		
	State at which point during an oscillation the oscillator has zero velocity but positive acceleration	ו?		

Q.13 Explain the force constant with oscillatory motion of a spring and set oscillating under gravity **(4)** through a small angle in a vertical plane.