	12th Science : Chemistry Chemical Kinetics,		DATE:
			TIME: 1 hour
			MARKS: 25
Only way to fulfill your dreams		SEAT NO:	
Note:-			
1. All Questions are comp	ulsory.		
Numbers on the right in	ndicate full marks.		

Section A

Q.1 Select and write the correct answer.

1. The rate equation for the reaction $2a + b \rightarrow c$ is found to be: rate = k [a] [b] the correct statement in relation to this reaction is

A) unit of k must be s⁻¹ C) rate of formation of c is twice the rate of disappearance of a B) t_{1/2} is a constant

D) value of k is independent of the initial concentration of a and b

2. Consider the reaction, $2 A + B \rightarrow$ Products When concentration of B alone was doubled, the halflife did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is

A) $L \mod^{-1} s^{-1}$ B) no unit C) mol $I^{-1} s^{-1}$ D) s^{-1}

^{3.} The slope of a graph ln[A]t versus t for a first order reaction is $-2.5 \times 10^{-3} \text{s}^{-1}$. The rate constant for the reaction will be

A) $5.76 \times 10^{-3} \text{ s}^{-1}$ B) $1.086 \times 10^{-3} \text{ s}^{-1}$ C) $-2.5 \times 10^{-3} \text{ s}^{-1}$ D) $2.5 \times 10^{-3} \text{ s}^{-1}$

4. At certain temperature, the half life period for the thermal decomposition of a gaseous substance depends on the initial partial pressure of the substance as follows

p(mm hg) 500 250 $t_{1/2}$ (in min) 235 950 Find the order of reaction [Given log (23.5) = 1.37; log (95)= 1.97; log 2 = 0.30] A) 1 B) 2

	D) Z
C) 2.5	D) 3

Q.2 Answer the following.

- 1. Define Molecularity.
- ^{2.} Express the rate of reaction in terms of $Br_{(aq)}^{-}$ as reactant and $Br_{2(aq)}^{-}$ as product for the

reaction: 5 Br⁻ (aq) + BrO₃⁻ (aq) + 6 H⁻ (aq) \rightarrow 3Br₂ (aq) + 3 H₂O (*I*)

3. What is the effect of adding a catalyst on activation energy (E_a) and Gibbs free energy (G)?

Section B Attempt any Four

(3)

(4)

Q.3 What is the importance of chemical kinetics?

(2) Q.4 For the reaction, $CH_3Br_{(aq)} + OH_{(aq)} \rightarrow CH_3OH_{(aq)} + Br_{(aq)}^{-}$ rate law is rate = k[CH_3Br]

[OH]

- (a) How does reaction rate changes if [OH⁻] is decreased by a factor of 5? (b) What is change in rate if concentrations of both reactants are doubled?
- Q.5 (2) What are the units for rate constants for zero order and second order reactions if time is expressed in seconds and concentration of reactants in mol/L?
- For a chemical reaction represented by $R \rightarrow P$ the rate of reaction is denoted by $\underline{\Delta}[R] \over \Delta t$ or $\underline{\Delta}[P] \over \Delta t$ Q.6 (2) why a positive sign (+) is placed before $\underline{\Delta[\mathrm{P}]}$ and not before $\underline{\Delta[\mathrm{R}]}$?

$$\frac{\Delta t}{\Delta t}$$
 and not before $\frac{-t}{\Delta t}$

- Q.7 What is the use of integrated rate equation?
- Q.8 Dinitrogen pentoxide decomposes as follows:

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$

If $\frac{-d[N_2O_5]}{dt} = K_1[N_2O_5], 2\frac{d[NO_2]}{dt} = K_2[N_2O_5] \text{ and } 2\frac{d[O_2]}{dt} = K_3[N_2O_5]$

Derive a relation between K_1 , K_2 and K_3 .

Section C Attempt any Two

- Derive the integrated rate law for the first order reaction, $A_{(g)} \rightarrow B_{(g)} + C_{(g)}$ in terms of Q.9 (3) pressure.
- Q.10 Comment on the effect of catalyst on each of the following : 1. Activation energy 2. Rate of forward reaction 3. Rate of backward reaction.
- (3) Q.11 For the reaction, $3l^{-}(aq) + S_2O_8^{2-}(aq) \rightarrow l^{3-}(aq) + 2SO_4^{2-}(aq)$ Calculate the rate of formation of I_3^- , the rates of consumption of I^- and $S_2O_8^{2-}$ and the

overall rate of reaction if the rate of formation of SO_{4}^{2-} is 0.022 moles dm⁻³ sec⁻¹

Section D Attempt any One

- (4) Q.12 What is zeroth order reaction? Derive its integrated rate law. What are the units of rate constant?
- (4) Q.13 The gaseous reaction $A_2 \rightarrow 2A$ is first order in A_2 . After 12.3 minutes 65,% of A_2 remains undecomposed. How long will it take to decompose 90% of A₂? What is the half life of the reaction?

(2)

(2)

(2)

(3)