

CLASS : XIITH SUBJECT : PHYSICS DATE : DPP NO. : 3

Topic :-Atoms

			ing the state of t		
1.	The angular momentum of electron in hydrogen atom is proportional to				
	a) \sqrt{r}	b) 1/r	c) r ²	d) $^{1/\sqrt{r}}$	
2.	Hydrogen atoms are excited from ground state of the principal quantum number 4. Then the number of spectral lines observed will be				
	a) 3	b)6	c) 5	d)2	
3.	Wavelength of first line in Lyman series is λ . The wavelength of first line in Balmer series is				
	a) $\frac{5}{27}\lambda$	b) $\frac{36}{5}\lambda$	c) $\frac{27}{5}\lambda$	$d)\frac{5}{36}\lambda$	
4.			b) Line spectrum d) Absorption spectrum		
5.	For an electron in the second orbit of Bohr's hydrogen atom, the moment of linear momentum is				
	a <i>n</i> π	b) $2\pi h$	c) $\frac{2h}{\pi}$	$\frac{h}{d}$	
6.	The angular momentum (L) of an electron moving in a stable orbit around nucleus is a) Half integral multiple of $\frac{h}{2\pi}$ b) integral multiple of h				
	c) integral multiple of $\frac{h}{2\pi}$		d) Half integral multiple of h		
7.	The shortest wavelength in Lyman series is 91.2 nm. The longest wavelength of the series is a) 121.6 nm b) 182.4 nm c) 234.4 nm d) 364.8 nm				
	a) 121.0 mm	6) 102. 1 mm	C) 257.7 IIII	а, 30т.0 mii	

8.	The first excited state of hydrogen atoms is 10.2 eV above its ground state. The temperature needed to excite hydrogen atoms to first excited level, is							
	a) $7.9 \times 10^4 \text{ K}$	b) $3.5 \times 10^4 \text{ K}$	c) $5.8 \times 10^4 K$	d) $^{14} \times 10^4$ K				
9.	The ratio of the energies of the hydrogen atom in its first to second excited states is							
	a) 9/4	b) 4/1	c) 8/1	d) 1/8				
10.	If λ is the wavelength of hydrogen atom from the transition $n=3$ to $n=1$, then what is the wavelength for doubly ionised lithium ion for same transition?							
	a) $\frac{\lambda}{3}$	b) 3λ	c) $\frac{\lambda}{9}$	d) ^{9 \(\lambda\)}				
11.	In H spectrum, the wavelength of H_{α} line is 656 nm whereas in a distance galaxy, the wavelength of H_{α} line is 706 nm. Estimate the speed of galaxy with respect to earth							
	a) $2 \times 10^8 \text{ms}^{-1}$	b) $2 \times 10^7 \text{ms}^{-1}$	c) $2 \times 10^6 \text{ms}^{-1}$	d) $^{2 \times 10^{5} \text{ms}^{-1}}$				
12.	n a hydrogen atom, the electron in a given orbit has total energy -1.5 eV. The potential energy -1.5 eV.							
	a) 1.5 eV	b) -1.5 eV	c) 3.0 eV	$^{-3.0}\mathrm{eV}$				
13.	The first member of the Balmer's series of the hydrogen has a wavelength λ , the wavelength the second member of its series is							
	a) $\frac{27}{20}\lambda$		c) $\frac{27}{20}\lambda$	d) None of these				
14.	4. Energy required for the electron excitation in Li ²⁺ from the first to the third Bohr orbit							
	a) 36.3 eV	b) 108.8 eV	c) 122.4 eV	d) ^{12.1eV}				
15.	The ionisation potential of mercury is 10.39 V. How far an electron must travel in an electric field of 1.5 \times 10 ⁶ Vm ⁻¹ to gain sufficient energy to ionize mercury? a) $\frac{10.39}{1.5 \times 10^6} \times 1.0 \times 10^{-19}$ m b) $\frac{10.39}{1.5 \times 10^6}$ m c) 1.39 \times 1.6 \times 10 ⁻¹⁹ m d) $\frac{10.39}{1.6 \times 10^{-19}}$ m							
16.	Wavelength of light em a) 6563 Å	itted from second orbit (b) 4102 Å	to first orbit in a hydrog c) 4861 Å	en atom is d) 1215 Å				

	a) Band emission spectrumc) Band absorption spectrum		b) Line emission spectrumd) Line absorption spectrum				
18.	18. The magnetic moment of the ground state of an atom whose open sub-shell is half-fille five electrons is						
	a) $\sqrt{35}\sqrt{\mu_B}$	b) 35 μ_B	c) $35\sqrt{\mu_B}$	d) $^{\mu_B\sqrt{35}}$			
	V • V • O						
19.	 9. The wavelengths involved in the Spectrum of deuterium (²₁D) are slightly different from that of hydrogen Spectrum, because a) Sizes of the two nuclei are different b) Nuclear forces are different in the two cases c) Masses of the two nuclei are different d) Attraction between the electron and the nucleus is different in the two cases. 						
20.	Consider an electron in the <i>n</i> th orbit of a hydrogen atom in the Bohr model. The circumference						
	-	e orbit can be expressed in terms of the de					
	a) $(0.529) n\lambda$	b) $\sqrt{n} \lambda$	c) (13.6)λ	d) $n\lambda$			

17. White light is passed through a dilutee solution of potassium permanganate. The spectrum

produced by the emergent light is