

CLASS : XIITH SUBJECT : PHYSICS DATE : DPP NO. : 1

Topic :-Atoms

1.	An electron of an atom transits from n_1 to n_2 . In which of the following maximum frequency of photon will be emitted?					
	a) n_1 =1 to n_2 =2	b) n_1 =2 to n_2 =1	c) n_1 =2 to n_2 =6	d) n_1 =6 to n_2 =2		
2.	If <i>a</i> is radius of first Bohr orbit in hydrogen atom, the radius of the third orbit is					
	a) 3 a	b) 9 a	c) 27 a	d) 81 a		
3.	An electron collides with a hydrogen atom in its ground state and excites it to $n=3$. The energy given to hydrogen atom in this inelastic collision is (neglect the recoiling of hydrogen atom)					
	a) 10.2 eV	b) 12.1 eV	c) 12.5 eV	d) None of these		
4. When a hydrogen atom is bombared, the atom is excited to then $n=4$ state. The energy released, when the atom goes from $n=4$ state to the ground state is						
	a) 1.275 eV	b) 12.75 eV	c) 5 eV	d) 8 eV		
5.	Excitation energy of a hydrogen like atom in its first excitation state is 40.8 eV. Energy needed to remove the electron from the ion in ground state is					
	a) 40.8 eV	b) 27.2 eV	c) 54.4 eV	d) 13.6 eV		
6.	The spectral series of the hydrogen atom that lies in the visible ragion of the electromagnetic spectrum					
	a) Paschen	b) Balmer	c) Lyman	d) Brackett		
7.	An alpha nucleus of energy $\frac{1}{2}mv^2$ bombards a heavy nuclear target of charge Ze . Then the					
	• •	•	eus will be proportional			
	a) v ²	b)1/m	c) $1/v^4$	d) 1/Ze		
8.	In terms of Bohr radius a) 4 a_o	a_o , the radius of the second b) 8 a_o	cond Bohr orbit of a hydrony c) $\sqrt{2} a_o$	rogen atoms is given by d) 2 a_o		

9.	The Kinetic energy of the electron in an orbit of radius r in hydrogen atom is (e = charge)					
	a) $\frac{e^2}{r^2}$	b) $\frac{e^2}{2r}$	c) $\frac{e^2}{r}$	$\mathrm{d})\frac{e^2}{2r^2}$		
10.	If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li^{2+} is					
	a) 30.6 eV	b) 13.6 eV	c) 3.4 eV	d) 122.4 eV		
11.	The ratio of minimum t a) 5:9	to maximum wavelength b) 5:36	in Balmer series is c) 1:4	d) 3:4		
12.	V_1 is the frequency of the series limit of Lyman series, V_2 is the frequency of the first line of Lyman series and V_3 is the frequency of the series limit of the Balmer series. Then					
	a) $v_1 - v_2 = v_3$	b) $v_1 = v_2 - v_3$	c) $\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$	$d)\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$		
13.			rogen atom is proportion			
	a) n^3	b) n^{-3}	c) n	$d)n^0$		
14.	Given that in a hydrogen atom, the energy of n th orbit $E_n = -\frac{13.6}{n^2}$ eV. The amount of energy required to send electron from first orbit to second orbit is					
	a) 10.2 eV	b) 12.1 eV	c) 13.6 eV	d) 3.4 eV		
15.	The ratio of minimum to maximum wavelength in Balmer series is					
	a) 5: 9	b) 5: 36	c) 1: 4	d) 3: 4		
16.	state of hydrogen?					
	a) $n = 3$	b) $n = 4$	c) $n = 1$	d) $n = 2$		
17.	The spin-orbit interaction a) <i>s</i> —level	ion has no effect in the load $(b)p$ —level	evel of the hydrogen ato $c) d$ —level	m d) f —level		
18.	If the radii of nuclei of $_{13}\mathrm{Al^{27}}$ and $_{30}\mathrm{Zn^{64}}$ are R_1 and R_2 respectively, then $\frac{R_1}{R_2}$ is equal to					
	a) $\frac{27}{64}$	b) $\frac{64}{27}$	c) $\frac{4}{3}$	$d)\frac{3}{4}$		
19.	For ionising an excited hydrogen atom, the energy required (in eV) will be					
	a) A little less than 13.6	0 0 J 1 3 . 6	c) More than 13.6	d) 3.4 or less		

20.	Let the PE of hydrogen excited state will be	atom in the ground stat	e be zero. Then its total (energy in the first
	a) 27.2 eV	b) 23.8 eV	c) 12.6 eV	d) 10.2 eV