

Class : XIIth Date : Subject : PHYSICS DPP No. : 4

Topic :-Nuclei							
.1.	A nuclear bomb exploded 200 <i>km</i> above the surface of moon. The sound of explosion on the moon						
	a) Will be heard before the explosion is seen c) Will be heard after explosion		b) Will be heard at the same time d) Will not be heard at all				
2.	An electron jumps from 5 th orbit of 4 th orbit of hydrogen atom. Taking the Rydberg constant as 10 ⁷ per metre what will be the frequency of radiation emitted						
2	a) $6.75 \times 10^{12} Hz$	b) $6.75 \times 10^{14} Hz$	c) $6.75 \times 10^{13} Hz$	d)None of these			
з.	a) Doppler's effect	b) Compton's effect	c) Bohr's theory	d)Diffraction of light			
4.	The ratio of the longes a) $\frac{25}{9}$	t to shortest wavelength b) $\frac{17}{6}$	s in Brackett series of hy c) 9 5	vdrogen spectra is d) $\frac{4}{3}$			
5.	After two hours, one-sixteenth of the starting amount of a certain radioactive isotope remained undecayed. The half life of the isotope is						
6	a) 15 <i>minutes</i>	b) 30 <i>minutes</i>	c) 45 <i>minutes</i>	d)1 hour			
0.	A reaction between a p a) n^1	b) e^0	c n^0	d) e^1			
7	The half-life of a radioactive element is 3.8 days. The fraction left after 19 days will be						
	a) 0.124	b) 0.062	c) 0.093	d) 0.031			
8.	Select the wrong state	ment	.,	.,			
	a) Radioactivity is a statistical process.						
	b) Radioactivity is a spontaneous process.						
	c) Radioactivity is neutral characteristic of few elements.						
	d)Radioactive elements cannot be produced in the laboratory.						
9.	Half life of a radioactive element is 10 days. The time during which quantity remains 1/10 of initial mass will be						
	a) 100 days	b) 50 days	c) 33 days	d) 16 days			
10.	F_{pe} represents electrical force on proton due to electron and \mathbf{F}_{ep} on electron due to proton in a						
	hydrogen atom. Similarly \mathbf{F}_{pe} represents the gravitational force on proton due to electron and						
	${f F}_{ep}$ the corresponding force on electron due to proton. Which of the following is not true?						
	a) $\mathbf{F}_{Pe} + \mathbf{F}_{ep} = 0$		$\mathbf{b})\mathbf{F'}_{Pe} + \mathbf{F'}_{ep} = 0$				
	c) \mathbf{F}_{Pe} + \mathbf{F}'_{Pe} + \mathbf{F}_{ep} -	$+ \mathbf{F'}_{ep} = 0$	$\mathbf{d})\mathbf{F}_{Pe} + \mathbf{F}'_{Pe} = 0$				

11.	An electron changes its position from orbit $n = 4$ to the orbit $n = 2$ of an atom. The wavelength					
	of the emitted radiation is $(R = Rydberg's constant)$					
	$\frac{16}{10}$	$h)\frac{16}{1}$	$()\frac{16}{10}$	$d)^{16}$		
	$\frac{a_{J}}{R}$	3R	$\frac{c}{5R}$	$\frac{1}{7R}$		
12.	Nuclear fission was dis	uclear fission was discovered by				
	a) Ottohann and F. Stra	ssmann	b) Fermi			
	c) Bethe		d)Rutherford			
13.	The energy required to excite an electron from the ground state of hydrogen atom to the first					
	excited state, is					
	a) $1.602 \times 10^{-14} J$	b) 1.619 × 10 ⁻¹⁶ J	c) 1.632 × 10 ⁻¹⁸ J	d) 1.656 × 10^{-20} J		
14.	4. If M is the atomic mass and A is the mass number, packing fraction is given by					
	$a) \xrightarrow{M}$	h) $\frac{M-A}{M-A}$		$d = \frac{A - M}{M}$		
	$\frac{M}{M-A}$	A	M - A	u) <u> </u>		
15.	15. A mixture consists of two radioactive materials A_1 and A_2 with half lives of 20 <i>s</i> and 10 <i>s</i> respectively. Initially the mixture has 40 <i>g</i> of A_1 and 160 <i>g</i> of A_2 . The amount of the two in the mixture will become equal after					
	a) 60 <i>s</i>	b) 80 <i>s</i>	c) 20 <i>s</i>	d)40 <i>s</i>		
16.	The average binding energy per nucleon in the nucleus of an atom is approximately					
	a) 8 <i>eV</i>	b) 8 <i>KeV</i>	c) 8 <i>MeV</i>	d)8 <i>J</i>		
17.	The phenomenon of radioactivity is					
	a) Exothermic change which increases or decreases with temperature					
	b)Increases on applied pressure					
	c) Nuclear process does not depend on external factors					
	d)None of the above					
18.	. The speed of daughter nuclei is					
	Δm	$\sum 2\Delta m$	Δm	Δm		
	a) $c \frac{1}{M + \Delta m}$	D_{C}	C) c M	$d \int c \sqrt{M + \Delta m}$		
19.	. The most stable particle in Baryon group is					
	a) Proton	b) Lamda-particle	c) Neutron	d)Omega-particle		
20.	A radioactive sample is α -emitter with half life 138.6 days is observed by a student to have					
	2000 disintegration/s. The number of radioactive nuclei for given activity are					
	a) 3.45×10^{10}	b) 1×10^{10}	c) 3.45×10^{15}	d) 2.75×10^{11}		
	aj 5.75 × 10	0,1 ^ 10	$C_{J} J T_{J} \wedge 10$	uj 2.75 A 10		