

7. In Fig. *X* represents time and *Y* represents activity of a radioactive sample. Then the activity of sample, varies with time according to the curve



8. In the Bohr model of the hydrogen atom, let R, v and E represent the radius of the orbit, the speed of electron and the total energy of the electron respectively. Which of the following quantity is proportional to the quantum number n

a) 
$$R/E$$
 b)  $E/v$  c)  $RE$  d)  $uR$ 

- 9. In Bohr's model of hydrogen atom, which of the following pairs of quantities are quantized
  - a) Energy and linear momentumb) Linear and angular momentumc) Energy and angular momentumd) None of the above
- 10. Two nucleons are at a separation of one fermi. Protons have a charge of  $+ 1.6 \times 10^{-19}$  C. The net nuclear force between them is  $F_1$ , if both are neutrons  $F_2$  if both are protons and  $F_3$  if one is proton and the other is neutron. Then

a) 
$$F_1 = F_2 > F_3$$
 b)  $F_1 = F_2 = F_3$  c)  $F_1 < F_2 < F_3$  d)  $F_1 > F_2 > F_3$   
11. If  $r_1$  and  $r_2$  are the radii of the atomic nuclei of mass numbers 64 and 125 respectively, then the ratio  $(r_1/r_2)$  is

a) 
$$\frac{64}{125}$$
 b)  $\sqrt{\frac{64}{125}}$  c)  $\frac{5}{4}$  d)  $\frac{4}{5}$ 

12. In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two gamma ray photons. This process forms the basis of an important diagnostic procedure called

13. If  $\lambda_{max}$  is 6563 Å, then wavelength of second line for Balmer series will be

a) 
$$\lambda = \frac{16}{3R}$$
 b)  $\lambda = \frac{36}{5R}$  c)  $\lambda = \frac{4}{3R}$  d) None of the above

14. Rest mass energy of an electron is 0.54 *MeV*. If velocity of the electron is 0.8*c*, then *K*. *E*. of the electron is

```
a) 0.36 MeV b) 0.41 MeV c) 0.48 MeV d) 1.32 MeV
```

15. If the binding energies of a deuteron and an alpha particle are 1.125MeV and 7.2MeV, respectively , then the more stable of the two is

a) deuteron

- b) Alpha-particle
- c) Both (a) and (b)
- d) Sometimes deuteron and Sometimes Alpha-particle
- 16. Consider the following two statements

- A. Energy spectrum of  $\alpha$ -particles emitted in radioactive decay is discrete
- B. Energy spectrum of  $\beta$ -particles emitted in radioactive decay is continuous
- a) Only *A* is correct b) Only *B* is correct
- c) *A* is correct but *B* is wrong d) Both *A* and *B* are correct

17. Two radioactive materials  $X_1$  and  $X_2$  have decay constants  $10\lambda$  and  $\lambda$  repectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of  $X_1$  to that of  $X_2$  will be 1/e after a time

|     | a) $\frac{1}{10\lambda}$                                               | b) $\frac{1}{11\lambda}$        | c) $\frac{11}{10\lambda}$  | d) $\frac{1}{9\lambda}$           |
|-----|------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------------------------|
| 18. | . If half life of radium is 77 days. Its decay constant in day will be |                                 |                            |                                   |
|     | a) $3 \times 10^{-13}$ /day                                            | b) $9 \times 10^{-3}$ / day     | c) $1 \times 10^{-3}$ /day | d) $6 \times 10^{-3}$ /day        |
| 19. | Which of the following atoms has the lowest ionization potential       |                                 |                            |                                   |
|     | a) <sup>16</sup> <sub>8</sub> 0                                        | b) <sup>14</sup> <sub>7</sub> N | c) $^{133}_{55}Cs$         | d) <sup>40</sup> <sub>18</sub> Ar |
| 20. | Isobars are formed by                                                  |                                 |                            |                                   |
|     | a) $\alpha$ –decay                                                     | b) $\beta$ –decay               | c) $\gamma$ –deacy         | d) <i>h</i> –decay                |