
System of Particles and Rotational Motion

1PHYSICS

EXERCISE-I (MHT CET LEVEL)

Q.1 (2)

The coordinates of C.M of three particle are

1 1 2 2 3 3

1 2 3

m x m x m x
x

m m m

  


 

1 1 2 2 3 3

1 2 3

m y m y m y
y

m m m

  


 

here m
1
= m

2
= m

3
= m

 1 2 3x x x m
so x 2,

m m m

 
 

 

 1 2 3y y y m
y 2

m m m

 
 

 

so coordinates of C.M. of three particle are

(2, 2)

V=300m/s

Q.2 (2)

Centre of mass shifts towands heavier side

Q.3 (2)

1 1 2 2 3 3
cm

1 2 3

m x m x m x
x

m m m

 


 

 m 0 PQ PR PQ PR

3m 3

  
 

Q.4 (2)

Fext = 0

 vcm = ucm = 0

Q.5 (4)

E =
2P

2m
EP2

i.e. if P is increased n times then E will increase n2 times.

Q.6 (4)

a
cm

=
1 2

1 2

m g m g

m m



 = g

Q.7 (3)

V
cm

=
1 1 2 2

1 2

M V M V

M M





=
ˆ ˆ ˆ200 10i 500(3i 5j) 25ˆ ˆ5i j

700 7

  
 

Q.8 (4)
V

CM
= 0, because internal force cannot change the ve-

locity of centre of mass

Q.9 (1)

K.E =
2P

2m

Q.10 (1)

P
4
= P

8
= 20N.S

2

8

(20)
K.E

2 8
 



= 25 J

Q.11 (1)
Area of F-t curve = A = Impulse.
Impulse = dP = A = mv – 0

 v =
A

M
.

Q.12 (3)

P = 2mE

 P m (if E = const.)


1 1

2 2

P m

P m


Q.13 (2)

/////

3kg

10 m/s
3kg

60º
60º

10 m/s
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p = 2mv cos = 2 × 3 × 10 × Cos 60°

= 30 kg m/s

Q.14 (3)

Q.15 (b)

Q.16 (c)
Q.17 (4)

F = v
dm

dt

210 = 300 ×
dm

dt


dm

dt
= 0.7 kg/s.

Q.18 (2)

From v = r, linear velocities (v) for particles at different

distances (r) from the axis of rotation are different

Q.19 (3)

2 1–

t

 
 

1200 2

60 20

 
 



 = 2 Red/s2

Q.20 (2)

s H

H

T 12 60 60

Ts 60

  
 



s

H

720





Q.21 (1)

0 t
2

   
   

 
{ = uni form }

Q.22 (1)

231.4 31.4
2.5

4 4 3.14
I kg m

a


   

 

Q.23 (3)

Q.24 (4)

Q.25 (2)
I

z
= I

X
+ I

y

Q.26 (1)

I
x
+ I

y
= I

z
=MK2

0.5 = 2 × K2

K = 50 cm

Q.27 (3)

For toppling about edge xx’

At the moment of toppling the normal force pass

through axis xx’.

min min

3a a 2mg
F mg or F

4 2 3
 

Q.28 (3)

Q.29 (1)

As we know,  is change in angular momentum.

so,
20

3
  SI units

Q.30 (4)

Q.31 (1)

r F  
 

ˆ ˆ ˆ8i 10j 12k   


Q.32 (1)

2 21 1
I mv

2 2
 

V = m/s

Q.33 (3)

as,
2L

KE
2I



if L = constant,

then
L

KE
I



as I
A

> I
B

so (KE)
A

<(KE)
B

Q.34 (3)

L mvr 


Q.35 (1)

For solid sphere rolling without slipping on incined

plane, acceleration
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1 2

2

gsin
a

K
1

R






For solid sphere slipping on inclined plane without roll-

ing, acceleration

2a g sin 

Therefore required ratio
1

2

a

a


2

2

1 1 3

2K 711
5R

  



Q.36 (4)

As the disc is in combined rotation and translation,

each point has a tangential velocity

and a linear velocity in the forward direction. From figure

netv (for lowest point)

v R v v 0

and acceleration

    

v/R

v=R

2 2

0
v v

R R
  

(since linear speed is constant)

Q.37 (1)

Q.38 (4)

Q.39 (3)

2
2

2

1 k
mv 1 mgh

2 R

 
   

 

2
2

2gh

(1 k / R )
  



 K
R

>K
C

> K
S

R c s    

EXERCISE-II (NEET LEVEL)

Q.1 (4)
Centre of mass is a point which can lie within or
outside the body.

Q.2 (4)
self explainatory

Q.3 (2)
Centre of mass is nearer to heavier mass

Q.4 (4)

(0.10) (2R.10)

130º
R

C
R 3R

x
com

=
0mx m 2R mR 3mR

R
3M 3M

  
 

y
com

=
mxo mxo m 3R R

3m 3

 


Co-ordinats of com is
R

R
3

 
 

 
. It is at

Q.5 (3)
com is a point while the whale mass of the body is
supped to concetrated

Q.6 (3)

Com will more towards heauy body it will be toward of

Q.7 (1)
Body at rest may possess potential energy.

Q.8 (3)
If initial velocity of system is not zero then centre of
mass moves with constant velocity.

Q.9 (2)
By conservation of linear momentum
m

1
v

1
= m

2
v

2

100 × 30 = (100 + 200) v
v = 10 m/s
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200 kg

100 kg
Q

Q.10 (2)

1 1 2 2
com

1 2

m v m v
V

m m






m
1
= 2kg v

1
= 2 m/s

m
2
= 4kg v

2
= 10 m/s

com

2 2 4 10
V

6

  

=
44

6
= 7.3 m/s

Q.11 (1)

V
com

=
1 1 2 2

1 2

m v m v

m m





v
com

=
20 2v 10 v

30

  

=
5pv 5

V
3y 3



Q.12 (1)

22

com

1 2

mir m r
r

m m






=
   ˆ ˆ ˆ ˆ ˆ ˆ10 i j k 30 i j k

40

     

ˆ ˆ ˆ20i 20j 20k

40

  


=  1 ˆ ˆ ˆi j k
2

  

Q.13 (2)

P
i
= P

i

O = mv MV


mv
V

M
 



mv
v

m


Q.14 (2)
P

i
= P

F

O =
1 2P P
 

2 1P P
 

K.E. of 40 kg mass is 96J rule

So 96 =

2
1

1

P

2m

2
1P 2 40 96  

2
1P 80 96 

K.E. of other =

2 2
2 1

2 2

P P

2m 2m


=
80 96

2 20




= 192 J

Q.15 (2)

Here ˆ ˆ 2imv jmv mV 


That is ˆ ˆ( )
2

v
v i j 


Hence
12 . 5

2 2

v v
v Herev ms     

So,
15

2
V ms

Q.16 (4)
P

i
= P

f

1 2Q P P 
 

2 1P –P
 

K.E. of 40 kg mass is 96 Jule

So

2
1

1

P
96

2m


P12 = 2 × 40 × 96
P12 = 80 × 96

K.E. of other

2 2
2 1

2 2

P p

2m 2m
 

80 96
192 J

2 20


 



Q.17 (2)
Q.18 (1)
Q.19 (1)

If mass = m
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first ball will stop
 v = 0
so% K.E. = 0 (min)
In other cases there will be some kinetic energy
(K.E. can't be negative)

Q.20 (1)

45° X

p = 3 mVf

Y

m 2v

v
2m

pi

Initial mometum of the system

i
ˆ ˆp m 2vi 2m vj   

= 2 2(m 2v) (2m v)  

(magniatude)

= 2 2
Final momentum of the system = 3mV

By the law of conservation of momentum

2 2mv 3mV

 combined

2 2v
V

3


Loss in energy

2 2 2
1 1 2 2 1 2 combined

1 1 1
E m V m V (m m )V

2 2 2
    

2 2 24 5
E 3mv mv mv 55.55%

3 3
    

Q.21 (1)

Q.22 (3)

0.4kg
vB

A B
vA

0.2kg

Initial linear momentum of system = A A B Bm v m v
 

= 0.2 × 0.3 + 0.4 × v
B

Finally both balls come to rest
 final linear momentum = 0
By the law of conservation of linear momenum
0.2 × 0.3 + 0.4 × v

B
= 0

 B

0.2 0.3
v 0.15 m / s

0.4


   

Q.23 (1)

v
1

=
1 2 1 2 2

1 2 1 2

(m – em )u m (1 e)u

m m m m




  =

1(m – e2m)u 2m(1 e) 0

m 2m m 2m

 


 
= 0

 0 = m – e2m
 e = 1/2

Q.24 (3)
Q.25 (3)
Q.26 (1)

M

u1=6m/s

m

u2=4m/s

1 2 2 2
1 1

1 2 1 2

m m 2m u
v u

m m m m

 
  

  

Substituting m
1
= 0, v

1
= –u

1
+ 2u

2

v
1
= –6 + 2(4) = 2 m/s

i.e. the lighter particle will move in original direction with
the speed of 2 m/s.

Q.27 (4)

m2

v2=–5m/sv1=+3m/s

m1

As m
1
= m

2
therefore after elastic collision velocities of

masses get interchanged
i.e. velocity of mass m

1
= –5 m/s

and velocity of mass m
2
= +3m/s

Q.28 (4)
Q.29 (4)

0.5 × v
p
+ m × 0 = 5.05 v


f

i

v

v =
0.05

5
= 10–2



2
f

2
i

1
m(v )

2
1

m(v )
2

= (10–2)2 = 10–4.

Q.30 (1)

After explosion m mass comes at rest and let Rest (M
– m) mass moves with velocity v.
By the law of conservation of momentum MV = (M –

m)v
MV

v
(M m)



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Q.31 (4)
By the conservation of momentum

v 80)7()40(1040  v 5.1 m/s

Q.32 (4)
Due to elastic collision of bodies having equal mass,
their velocities get interchanged.

Q.33 (2)

Q.34 (3)
Initial momentum of the system = mv – mv = 0
As body sticks together
 final momentum = 2mV

By conservation of momentum 2mV = 0
 V=0

Q.35 (4)

Initial momentum = ˆ ˆP mvi mvj 


P 2mv


Final momentum = 2m × V
By the law of conservation of momentum

2m × V = 2mv


v

V
2



In the problem v = 10 m/s (given)


10

V 5 2 m / s
2

 

Q.36 (4)

Q.37 (2)

 =t

27 3000
1

60


  

Q.38 (3)

2
rad / s

60 30

 
  

Q.39 (3)

2 600
80

60

 
   

2
rad / s

8 4

 
  

2
2 600

0 2
60 4

   
      

20 4 100
2


    

 = 800 × rad

No. of ratution
800

n 400
2


 



Q.40 (4)

d
; t

dt


    

= 60 rad/ sec. × 5 sec. = 300 rad.
360 – 300 = 60 rad

Q.42 (2)

I = 2[5(0.2)2 + 2(0.4)4]

Q.42 (1)

The theorem of perpendicular axes is applicable only

for 2-D objects.

Q.43 (3)

For solid shpere

2 3 22 2 4
I MR R R

5 5 3

 
    

 

5176
R

105
  

Q.44 (3)

As disc is lying in the x-z plane, so applying

perpendicular axis theorem :-

I
x
+ I

z
= I

y

30 + I
z
= 40

 I
z
= 40 – 30 = 10 kg m2

Q.45 (1)

Ratio of moment of inertia of the rings
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2

1 1 1

2 2 2

I M R

I M R

  
   
  

2 2

1 1

2 2

2 R R

2 nR nR

l R

l R

 

 

     
      

    

( linear density of wire constant )  

1
3

2

3

1 1
(given)

8

8 2

I

I n

n n

  

   

Q.46 (2)

mr2

Q.47 (2)

90°

I =2
m

2

12

I =1
m2

12

So I = I
1
+ I

2
=

2 2 2

1 2

m m m
I I I

12 12 6
    

  

Q.48 (4)

I is depand and all feacture (1) (2) (3)

Q.49 (3)

According to problem disc is melted and recasted into

a solid sphere so their volume will be same.

2 34

3
Disc Sphere Disc ShereV V R t R    

2 34
,

6 3 6
Disc Disc

Disc Sphere

R R
R R t given

   
      

   

3 38
2
Disc

Disc Sphere Sphere

R
R R R   

Moment of inertia of disc

21
(given)

2
Disc DiscI MR I 

2
Disc(R ) 2M I 

2

2
Disc

2 2
(R )

5 2 10 10 5
DiscR M I I

M
 

    
 

Q.50 (4)

Disk
2ma

2

Ringma2

Square lamina
2ma

6
a

Four forming a square of side 2a 

2 2ma a
m 4

12 4

 
 

 



2m
a

m a44
12 4 2


 
  

  
  

 


2 2 2ma ma ma

12 4 3
 

So that moment of inertia least about square lamina.

Q.51 (2)

I
z
= I

x
+ I

y
I

z
= 2I

Q.52 (1)

2
22Mr

I Mr
2

 

Q.53 (1)
Q.54 (2)

M.I. = mr2 = 4 × 12 = 4 kg m2.

Q.55 (2)

Solid updinader about its axis like a disc

2mR 20 0.04
I

2 2


 

= 0.4 kq × m2

Q.56 (4)
For particle I = I

x
+ I

y

= mr
x

2 + mr
y
2

= m(r
x

2 + r
y
2)

= 2(32 + 22) = 26 unit

For particle 2, m [12 + (–1)2] = 2 × (2) = 4 unit
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For particle 3, m[12 + 12] = 2 × (2) = 4 unit

For particle 4, m(0) = 0

Total inertia = 26 + 4 + 4 = 34 unit.

Q.57 (3)

Given, I
solid sphere

= I
hallow sphere


2 2

1 2

2 2
Mr Mr

5 3



2

1

2
2

r 5

3r


 1

2

r
5 : 3

r


Q.58 (3)

I=20 kgm
2

I' = ?

as,
2ML

I 20
6

 

 ML2 = 120

2 2 2

C

L ML ML
I ' I M

2 12 4

 
     


2ML 120

I '
3 3

  = 40 kg m2

Q.59 (3)

I= mL
2

3

Q.60 (2)

x

y

z M, L

M, L

M, L

I = I
1
+ I

2
+ I

3

2 2
2ML ML 2

0 ML
3 3 3

   

Q.61 (1)

so,

2

I m 4
2

 
    



m m

mm



/ 

also, I = MK2

{Where M = 4m}

so,
2

2m 4 4m K
2

   


 K
2




Q.62 (3)

R

P

Q

IC

Ring

Applying parallel axis theorem

I
PQ

= I
C

+ MD2


2

2 2
PQ

MR 3
I M(R) MR

2 2
  

Q.63 (4)

y

(0,0)

(a ,–a)1

(2a,10)

(a,a)

m

m

mI

X

I = ma2 + ma2 + m(29)2

Q.64 (4)

Torque can be taken about any point in sapce.
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Q.65 (1)

Frequency, n = 20 Hz


i
= 2n = 40rad/sec


f
= 0, t = 10 sec

so, 
f
=

i
+t

0 = 40+× 10

so, = –4rad/sec2

Now, = I×= 5 × 10–3 × 4= 2

× 10–2 N-m

Q.66 (4)

dL

dt
 

Q.67 (1)

ˆ ˆ ˆ ˆ ˆ ˆP . (2i 3j 4k).(i 2 j 3k)       


= 2 + 6 + 12 = 20 watt.

Q.68 (1)

given, 
0
= 20 rad/sec

= 0

I = 50 kg-m2

t = 10 sec

0 0 20

t 10

  
  = –2rad/sec2

and  = I= 50 × 2 = 100 kg-m2/s2

=100 N-m

Q.69 (1)
= I;

2 2r mr I
I ' (2m)

2 2 2

  
    

   

’= I’.

' I ' I ' 1
; '

I I 2 2

  
    

 

Q.70 (4)

2 2 21 1
I mr

2 2
   

Q.71 (2)

By work energy theorem

2
2L 1 mL

my
2 2 3
 

3g

L
 

Q.72 (3)

I = constant

Mr2= (Mr2 + 2mr2)’

M
'

M 2m


 



Q.73 (1)

Initial Final

Applying conservation of angular momentum :-

I
1


1
= I

2


2

 1 2 2

1

2
I I

T


  


2

2

2
100 [100 50 (2) ]

10


    

on solving, 2

2

30


  rad/sec

Q.74 (1)


ext

= 0;
from conservation of angular momentum
L = I = constant
I

1


1
= (I

1
+ I

2
)

2

(
1
=

60

2600 
= 20,

2
= 400

60

2400 
=

3

40
)
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I
P

× 20 = (I
P
+ I

Q
)

3

40

6 × 20= (I
P
+ I

Q
)

3

40
(Given I

P
= 6)

After solving that we get I
2

= 3 kg m2

Q.75 (2)

2

2 2

1
I

2f
1 1

I mv
2 2




 

where v = r and
22

I I mR
5

 

Q.76 (1)

Q.77 (4)

2 21 1
mgh mv I

2 2
  

where w = v/r, I = 2/5 mR2

Q.78 (2)

21
E mv

2


2
2

T 2

1 k
E mv 1

2 R

 
  

 

for Ring
2

2

k
1

R


E
T

=
1

2
mv2 [1+1] = 2E

Q.79 (1)

Kinetic energy of ring,

2
2

2

1 K
K mv 1

2 R

 
   

2
1 10

0.4 (1 1)
2 100

 
     

2

2

K
1

R

 
  
 

 K = 4 × 10–3 Joule

Q.80 (2)

Final speed only depend’s on initial height but time

will depend on length and inclination of plane.

Q.81 (1)

2

2
Rotation

2
Total

2

K
K RFraction
K K

1
R

 



For disc,
2

2

K 1

2R
 ,

so, fraction

1

2 1: 3
1

1
2

 



Q.82 (3)

As person is coming towards axis, it's distance from

axis decreases. So M.O.I. also decreases.

From conservation of angular momentum :

as I decreases so,  increases

EXERCISE-III (JEE MAIN LEVEL)

Q.1 (3)
Q.2 (3)

Centre of mass of two particle system lies on the line
joining the two particles

Q.3 (2)
Let x be the displacement of man. Then displacement
of plank is L – x.
For centre of mass to remain stationary

M

3
(L – x) = M . x

 x =
L

4

M

L–x x

M/3

Q.4 (3)
Centre of mass hits the ground at the position where
original projectile would have landed.

m COM 2m

R/2 x1
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m.R

2
= 2mx1 x1 =

R

4

Distance = R +
R

4
=

5R

4

Q.5 (1)

vcm =

1
1 2 6

102 m / sec
1 1/ 2 3

  



.

Q.6 (4)

vcm =
1 1 2 2

1 2

m v m v

m m





 vcm =
ˆ ˆm(2i) m(2j)

2m



acm =
m(i j) m(0)

2m

 
.

vcm has same direction as of acm
 straight line.

Q.7 (2)
Q.8 (2)

Vcom = V cos

V cos = 2–m0 mv

2m



 v2 = 2V cos 

vcos vcos

1 2

Q.9 (4)
Speed is constant so K.E.  Constant
Gravitational potential energy change.

Momentum = vm


 Direction of v


changes

 Momentum changes

Q.10 (2)
Here net force = 0
means momentum is conserved.
pi = pf

0 = 1 2p p
 

 1 2p p 
 

K.E. =
2p

2m


1

2

K

K =
2

1

m

m

Q.11 (1)

m v

wall

Initial momentum of body = mv
& final momentum of body = – mv
Change in momentum = 2mv

Q.12 (3)

netF


= 0

then p


= conserved

1 2 3p p p 
  

= 0

3
p


= –  1 2p p
 

3
vm


=  1 2m v v 
 


3

v


= –    ˆ ˆ ˆ ˆ3i 2 j i 4 j    
 

3v


= ˆ ˆ2i 2j 

Q.13 (1)

netF


= 0

then p


= conserved

pi = pf
m1v = m2(0) + (m1 – m2) v1

v1 =  
1

1 2

m v

m m

Q.14 (2)

v1 = 2gh = 2 10 10  = 10 2

k2 =
1

4
k1  v2

2 =
1

4
v1

2

 v2 = 1v

2
= 5 2

|P| = |–mv2 – (mv1)| = m |–v2 – v1|

|P| = 50 × 10–3 ×
3

2
×10 2 =

–115 10

2



J =P = 1.05N-s.

Q.15 (2)
mvi + mvj + 2mv3 = 0

3v


=
ˆ(vi vj)

–
2


= –

v

2
(i + ĵ ) = –

v

2
.

kf =
1

2
mv2 +

1

2
mv2 +

1

2
2m

2v

2
.
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kf =
23mv

2
.

Q.16 (3)
From momentum conservation
mu = 2mv

 v =
u

2

from energy conservation

1

2
× 2m ×

2
u

2

 
 
 

= 2 mgh

 h =

2u

8g

Q.17 (1)
In inelastic collision, due to collision some fraction of
mechanical energy is retained in form of deformation
potential energy.
 thus K.E. of particle is not conserved.
In absence of external forces momentum is conserved.

Q.18 (4)
0.5 × vp + m × 0 = 5.05 v


f

i

v

v =
0.05

5
= 10–2



2
f

2
i

1
m(v )

2
1

m(v )
2

= (10–2)2 = 10–4.

Q.19 (1)

1m 2gh + 0 = (m1 + m2) v

v =
1

1 2

m 2gh

(m m )

 v2 – u2 + 2g ×
h

9
= 6 + 2g ×

h

4
=

gh

2

 v =
gh

2

Also,
gh

2
=

1 2

m 2gh

m m
 2m1 + m1 + m2 ;


1

2

m
1

m
 .

Q.20 (3)
If e = 1 and m1 = m2 then after collision velocity
interchange

Q.21 (1)

V0

V = 5

V
2
= Z

0

Vel. of Sep = Vel of approach ( elastic)

 20 + 5 = V – 5

V = 30 m/s Ans.

vb = –(v0 + 2v) m1 > > m2

vb = –(20 + 10) = –30 m/sec.

Q.22 (2)
Q.23 (1)

mu = mv1 + mv2
.......(i)
u = v1 + v2
.......(i)

2 1v – v

u
= e

......(ii)

as solving have
1

2

v

v =
1– e

1 e

 
 
 

.

Q.24 (1)

1st Collision m m 4m
C

v0

A B

2nd Collision

Velocity of B v =
mv 4m(0 v)

5m

 
=

3m

5

m m

3v/5

A B
After collision of A and B.

 m m
3v/5

A B
Q.25 (3)

   1

5 5
5 10 0 v

2 2
   v1 = 20 m/sec
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   
2 21 5 1

KE 20 5 10
2 2 2

   

= 500 – 250 = 250 J.

Q.26 (2)

2 2
i 1 2

1 1
E mu mu

2 2
 

 1 2m u u 2mu   1 2u u
u

2




Energy loss =    2 2 2
1 2 1 2

1 2m 1
u u m u u

2 4 2
   

Q.27 (4)
p = 0.1 (6+4)
= 0.1 × 10 = 1 NS

Q.28 (2)


0
= 3000 rad/min


0
=

3000

60
rad/sec = (50 rad/sec)

t = 10 sec


f
= 0


f
=

0
+t

 = 50 – (10)

 = 5 rad/sec2

 = 
o
t +

2

1
 t2

= (50) (10) +
1

2
(–10) (10)2

 = 500 – 250 = 250 rad

Q.29 (3)
V=R
V = 10 × 0.2 = 2m /sec.

Q.30 (1)

=
2dmr

 = r2 dm = r2 m = mr2

Q.31 (3)


0
= 

1
+ 

2


0
=

 
2

m / 2
2

3

 
 
 



+

 
2

m / 2
2

3

 
 
 



=

2m

12



Q.32 (2)

I II1

Moment of inertia about

diameter of sphere I =
22

mr
5

Moment of inertia about tangent at their common point

2 2 2
1

2 14
I mr mr 2 mr

5 5

 
    
 

I
1
= 7I

Q.33 (4)
Moment of inertia of disc

about diameter I =
2mr

4
= 2,

mr2 = 8

I I 1

Moment of inertia about the
axis through a point on rim.

2
2

1

mr
I mr

4
  = 10

Q.34 (1)

Moment of inertia of solid sphere
2

1 1

2
I mr

5


Moment of inertia of hollowsphere
2

2 2

2
I mr

3


2 2
1 2

2 2
mr mr

m 3
 

1

2

r 5

r 3

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Q.35 (2)

O

R

I =
2MR

2

(pasing through 0)

Q.36 (4)
M.O.I. about C.O.M. is Minimum
I = I

C.M.
+ Mx

0
2

I = 2x2 – 12x + 27


d

dx


= 4x – 12 = 0

 x = 3

Q.37 (2)

 = I
2mr

2
 

= 0.25rad/sec2

Q.38 (2)
= I
 = constant  = increases

Q.39 (4)
=

0
+t

100 = 10+(15) = 6 rad/sec2

= I60 Nm

Q.40 (4)
= I
2 = I × 2  I = 1 kgm2

I = MR2

1 = M(2)2

1
M kg

4


Q.41 (1)

 2I mr   

Now, 
1
= (2m)

2 2r mr

4 2
   1

2


 

Q.42 (3)

F = 4 î – 10 ĵ

r


= (–5 î – 3 ĵ )

= r


× F


= (– 5 î – 3 ĵ ) × (4 î – 10 ĵ )

= 50 k̂ + 12 k̂ = 62 k̂

Q.43 (3)
torque of a couple is always remains constant about
any point

Q.44 (2)
Torque about O
F × 40 + F × 80 – (F × 20 + F × 60)
In clockwise direction
= F × 40

Q.45 (1)
Initial velocity of each point onthe rod is zero so
angular velocity of rod is zero.
Torque about O
= 

20g (0.8) =
2m

3



 20g (0.8) =

220(1.6)

3



3g

3.2
=  = angular acceleration

  =
15 g

16

Q.46 (4)
Torque about B

x
6N

(3 – x)

A B

2N 4N

2 × 3 = 6 (3 – x)
6 = 18 – 6x
6x =12
x=2m

Q.47 (1)

F

3a/4
mg

xx

For topling about edge xx _________

F
min.

3a

4
= mg

a

2

F
min.

=
2mg

3
.



System of Particles and Rotational Motion

15PHYSICS

Q.48 (4)

21
I 1000

2
 

10rad / sec 

2f = 10
5 300

f rad / sec rad / min 
 

Q.49 (3)


 =

dL

dt



=
0 04A – A

4
=

03A

4

 
 
 

Q.50 (2)

Y

v

Xo

d

 L = (mvd) = constant becouse v = const. and d =
const.

Q.51 (4)
L= 
' = 2

1

2








 2

2

1
=

1

2
''2

2

2


=´ 42

´ =
8

 
 
 

L´ = ´´ =
8


2=

4


=  L

4

Q.52 (3)

external torque ext


= 0


1


1
= 

2


2

when he stretches his arms 
so 

1
< 

2

then (
1
>

2
)

so, (L = constant)

Q.53 (2)

2 2
2

2

1 1 R v
KE I

2 2 2 R

 
    

 

21
Mv

4

Total KE =
2 21 1

I mv
2 2
 

2 21 1
Mv m

4 2
  

23
mv

4

Ratio =
1

3

Q.54 (2)

When A point travels  distance then B point 2 so, 2
length of string passes through the hand of the boy .

Q.55 (2)

a = 2

2

g sin

k
1

R

 
 
 
  
 

For solid sphere 
2

2

k 2

5R


For hollow sphere =
2

3
mR2 = mk2

2

2

k 2

3R


so k
s
< k

H

then a
s
> a

H

(so speed of solid sphere is greater then hollow

sphere)

Q.56 (1)

F


= Ma

 a =
F

M

For pure rolling
a =R

F

aR

Smooth
Surface

M

R
F × R = I

 =
FR


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F

m
=

FR.R



I = MR2

MR2 is the moment of inertia of chin pipe.

Q.57 (4)

As the inclined plane is smooth, the sphere can never

roll rather it will just slip down.

Hence, the angular momentum remains conserved

about any point on a line parallel to the inclined plane

and passing through the centre of the ball.

EXERCISE-IV

Q.1 [0036]

Favg t = P = m(vf – vi) = m  
12 gh2gh2 

 Favg =
 

t

gh2gh2m 12




= 36

Q.2 [0019]

Area = mv – mv0

–42 = 2 (v – 2)

–21 = v – 2

 v = –19 m/s

Q.3 [0190]

(50 + 50 + 95 + 5) × 2 = 195 v + 5(v + 4)

50 50

25 2m/s
v = 1.9

t =
s/m4

m4
=

rel

rel

u

s
= 1 sec.

1.9 × 100 × 1 = 190

Q.4 [0125]

NB 3mv = FT

4m (vx) = FT = 3 mv

vx =
4

v3
and vy = v

v' = 22 75100  = 25 22 34  = 125 m/s

Q.5 [0003J]

A

N.L N.L

A

B

B

v1

x1 x2

v2=0.5

by conservation of momentum

m
1
v

1
= m

2
v

2

2(v
1
) = 6 (0.5)

v
1
= 1.5 m/s

by Energy conservation spring potential energy =

2
22

2
11 vm

2

1
vm

2

1


=
22 )5.0(6

2

1
)5.1(2

2

1
 = 2.25 + 0.75

or U = 3.0 J Ans.

Q.6 [0020]

FR =
2

MR 2

a

R

a



 = 50 rad/s2

R = 10 m/s2

2

1
s  ×R × t2 =

2210
2

1
 = 20 m ]

Q.7 [0100]

'
10

R
M

5

2
MR

5

2
2

2 








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' = 100

Q.8 0004
g – T = 1 × a

a/2

m

a T

1g

T

T – f = 0.5
2

a

Tr + fr = Mr2= 0.5
2

a
=

4

a

2T =
2

a
 T =

4

a

g = a +
4

a
=

4

a5
 a = 8 m/s2

acceleration of hoop = a/2

Q.9 0001
K.Eloss = P.E.gain

mgh
R

v
I

2

1
mv

2

1
2

2 









2

2

R

v
I

2

1
= mg 














g4

v3 2

–
2mv

2

1


2mR

2

1
I  =

2)5.0(8
2

1
= 1 kg m2

Q.10 0158

160 = 80 × 12 + 60 × 12 +
22

12

M


 200 =
3

M
M = 600 kg

m1.0
200

20

6008060

180160600
xc 






I = Ic + Mx2 Ic = 160 – 200 × (0.1)2 = 158 kg m2

Q.11 (4)

Q.12 (2)

Q.13 (4)

Q.14 (2)

Q.15 (1)

Q.16 (4)

PREVIOUS YEAR'S

MHT CET

Q.1 (3)
Q.2 (1)
Q.3 (4)

Q.4 (2)

Q.5 (3)

Q.6 (4)

Q.7 (3)

Q.8 (1)

Let 2 kg mass be placed at x = 0, therefore 4 kg mass will
be situated at x = 9.

Therefore, x
com

=
1 1 2 2

1 2

m x m x

m m





=
0 4 9 36

6m
2 4 6

 
 



Thus, centre of mass will be situated at 6 m from 2 kg

mass.

Q.9 (2)

Q.10 (2)

Q.11 (2)

Q.12 (3)
Q.13 (1)
Q.14 (2)
Q.15 (1)
Q.16 (3)
Q.17 (4)
Q.18 (3)
Q.19 (4)
Q.20 (2)
Q.21 (1)
Q.22 (2)
Q.23 (4)
Q.24 (2)
Q.25 (1)
Q.26 (4)
Q.27 (1)
Q.28 (1)
Q.29 (1)
Q.30 (1)
Q.31 (3)
Q.32 (4)
Q.33 (3)
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Q.34 (1)
Q.35 (3)
Q.36 (2)
Q.37 (3)
Q.38 (4)
Q.39 (4)
Q.40 (2)
Q.41 (1)

Given, r = 60 cm = 0.6 m

m = 1kg



= 3 rev/s = 2×3 rad/s



= 1 rev/s = 2×1 rad/s

t = 30s

Torque,  = I = I
d

dt


= mr2

d

dt



 
   2 2 3 2 1

1 0.6
30

  
  

=0.15N-m

Q.42 (2)

Given, F =  3i 2 j k N  

r =  i j k m  

Torque,    r F i j k 3i 2 j k           

=

i j k

1 1 1

3 2 1





 

      i 1 2 j 1 3 k 2 3        

i 2 j k    

   
2 221 2 1     

= 1 4 1 6N m   

Q.43 (1)
Q.44 (2)

We know that

 Rotational kinetic energy,
21

E I
2

 

21
1500 1.2

2
  


3000

50 rad/s
1.2

  

Also, t  


50

t 2s
25


  


Q.45 (4)
Initially, the moment of inertia of the system at A,

2
2 2

i

MR 2m M
I mR R

2 2

 
    

 

O
V

Finally the moment of inertia of the system will become

2

f

MR
I

2


By conservation of angular moment about 0
L

i
= L

f

i i f fI I   

2i
f 2

f

I 2m M 2
R

I 2 MR

 
       

 

=
2m

1
M

 
  

 

Q.46 (3)
Because kinetic energy K

R
and retarding torque  are

same, therefore in accordance with the relation,
Loss in kinetic energy = Work done by torque

= . 

= .2 n 

So, both ring and disc stop after completing equal
number of revolutions n.

Q.47 (3)
As we know, torque,  = I.
Also  = FR

For a disc,
2mR

I
2



Now, from Eqs. (i) and (ii), we get

FR I  

2mR
FR

2 t


   

mR
F

2t




t

 
  

 

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Q.1 (2)

x

y

vm

m
v

2m

v'

Let v
 be velocity of third piece of mass 2m.

Initial momentum, ip 0


(As the body is at rest)

Final momentum, f
ˆ ˆp mvi mvj 2mv  

 

According to law of conservation of momentum

i fp p
 

 ˆ ˆ0 mv i mv j 2mv  


or
v vˆ ˆv i j
2 2

  


The magnitude of v
 is

2 2
v v v

v '
2 2 2

   
       

   

Total kinetic energy generated due to explosion

2 2 21 1 1
mv mv (2m)v '

2 2 2
  

2
2 21 1 1 v

mv mv (2m)
2 2 2 2

 
    

 

2
2 2mv 3

mv mv
2 2

  

Q.2 (3)

Let the particles A and B collide at time t. For their

collision, the position vectors of both particles should

be same at time t, i.e.

1 1 2 2r v t r v t  
  

or 1 2 2 1 2 1r r v t v t (v v )t    
     

....... (i)

Also, 1 2 2 1| r r | | v v | t  
   

or 1 2

2 1

| r r |
t

| v v |






 

 

Substituting this value of t in eqn. (i), we get

1 2
1 2 2 1

2 1

| r r |
r r (v v )

| v v |


  



 
  

 

or
1 2 2 1

1 2 2 1

r r (v v )

| r r | | v v |

 


 

   

   

Q.3 (4)

h v0

The situation is shown in the figure.

Let v be the velocity of the ball with which it collides

with ground. Then according to the law of conservation

of energy.

Gain in kinetic energy = loss in potential energy

i.e.
2 2

0

1 1
mv mv mgh

2 2
  (where m is the mass of

the ball)

or v2 – v
0

2 = 2gh .....(i)

Now, when the ball collides with the ground, 50% of its

energy is lost and it rebounds to the same height h.


250 1

mv mgh
100 2

 
 

 

or
1

4
v2 = gh or v2 = 4gh

Substituting this value of v2 in eqn. (i), we get

4gh – v
0

2 = 2gh

or v
0

2 = 4gh – 2gh = 2gh or v
0

= 2gh

Here, g = 10 ms–2 and h = 20 m

 2 1
0v 2(10ms ) (20m) 20ms  

Q.4 (3)

M
1

M

2

M

At rest

v'

v/3

M

1
v

2

Let v’ be the speed of second block afte the collision.
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As the collision is elastic, so kinetic energy is

conserved.

According to conservation of kinetic energy,

2
2 21 1 v 1

Mv 0 M Mv'
2 2 3 2

 
   

 

or
2

2 2v
v v '

9
 

or
2 2 2

2 2 2v 9v v 8
v ' v v

9 9 9


   

or
28 8 2 2

v ' v v v
9 3 3

  

Q.5 (3)

Mass of bullet, m = 10 g = 0.01 kg

Initial speed of bullet, u = 400 ms–1

Mass of block, M = 2kg

Lengthof string, l = 5m

Speed of the bullet on emerging from block, v = ?

a
m,u

M,0
Before collision

l

a
m,v

Reference

l

h=10 cm
= 0.1 cm

After collision

Using energy conservation principle for the block, (KE

+ PE)
reference

= (KE + PE)
h


2
1

1
Mv

2
= mgh or, v

1
= 2gh

v
1
= 2 10 0.1  = 2 m s–1

Using momentum conservation principle for block and

bullet system.

(M × 0 + mu)
before collision

= (M × v
1

+ mv)
after collision

 0.01 × 400 = 2 2 + 0.01 × v

v =
4 2 2

0.01


= 117.15 ms–1  120 ms–1

Q.6 (2)

Masses of the ball are same and collision is elastic so

their velocity will be interchanged after collision.

Q.7 (1)

Given p
i
= p

f
= mV

Change in momentum of the ball

= f ip p
 

=    fx fy ix iy
ˆ ˆ ˆ ˆp i p j p i p j  

m

60°

60°

V
60°

pipiy

pix

pfx

pfy
pf

=    fx fx fy iy
ˆ ˆi p p j p p  

= fx
ˆ ˆ2p i mVi   [p

fx
– p

iy
= 0 ]

Here, p
ix

= p
fx

= p
i
cos 60° =

mV

2

 Impulse imparted by the wall = change in the

momentum of the ball = mV.

Q.8 (Bonus)

Centre of gravity of a body is the point at which the

total gravitational torque on body is zero. Centre of

mass and centre of gravity coincides only for

symmetrical bodies.

Hence statement (i) and (ii) are incorrect.

A couple of a body produces rotational motion only.

Hence statement(iii) is incorrect.

Mechanical advantage greater than one means that

the system will require a force that is less than the load

in order to move it.

Hence statement (4) is correct.

Q.9 (2)

Energy transfered to B initial energy of B= zero

Final velocity of

2 1 1 1
B 2

1 2 1 2

M M 2M u
V u

M M M M

 
  

  

1 1M 4M u u 

2 2M 2M u 0 

 
B

2 4M u 4
V u

6M 3
 

2
22

2 B

2 2
1 1

1 41 2M uM V
2 32

1 1
M u 4Mu

2 2

 
 
 
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Fraction of energy lost
8

9


Q.10 (2)

Q.11 (1)

Q.12 (2)

2m
5

2m
5 m/5 v '



m v
v



By conservation of momentum :

   2m 2m mˆ ˆm(0) = –vi + –vj + v'
5 5 5



ˆ ˆv' = 2vi + 2vj


   
2 2

v' = 2v + 2v

= 2 2 v

Q.13 (1)

20 kg10kg

10m
XCM

CM

20×10 20
X = = m

20 +10 3

Q.14 (3)

When the string is cut, the rod will rotate about P. Let 

be initial angular acceleraiton of the rod. Then

Torque ,  = I =
2ML

3
 ....(i)

(Moment of inertia of the rod about one end =
2ML

3
)

Mg

P
Q

L/2 L/2

Also, t =
L

Mg
2

....(ii)

Equating (i) and (ii), we get

L
Mg

2
=

2ML

2
 or  =

3g

2L

Q.15 (2)

h
v

The kinetic energy of the rolling object is converted in

to potential energy at height

h =

23v

4g

 
  
 

So, by the law of conservation of mechanical energy,

we have

2 21 1
Mv I Mgh

2 2
  

2 2
21 1 v 3v

Mv I Mg
2 2 R 4g

  
         

v

R

 
   
 

2
2 2

2

1 v 3 1
I Mv Mv

2 4 2R
 

2
2

2

1 v 1
I Mv

2 4R
 or

21
I MR

2


Hence, the object is disc

Q.16 (4)

Here,

mass of the cylinder, M = 50 kg

Radius of the cylinder R = 0.5 m

Angular acceleration produced in the cylinder,

R

T

 = 2rev s–2 = 2 × 2 rad s–2 = 4 rad s–2

Moment of inertia of the cylinder about its axis

I =
21

MR
2

If T is the tension in the string, then torque acting on th
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cylider is

= TR

As  = I

\ a=
I


= 2

TR

1
MR

2
orT=

MR 50 0.5 4

2 2

   
 =157N

Q.17 (1)

Acceleration of the solid sphere slipping down the

incline without rolling is

a
slipping

= g sin 

..... (i)

Acceleration of the solid sphere rolling down the incline

without slipping is

rolling 2

2

g sin g sin 5
a g sin

2 7k 11
5R

 
   



..... (ii)

2

2

k 2
For solid sphere,

5R

 
   
 

Divide equation (ii) by equation (i), we get

rolling

slipping

a 5

a 7


Q.18 (3)

For the conservation of angular momentum about

origin, the torque 
 acting on the particle will be zero.

By definition, r F  


Here, ˆ ˆ ˆr 2i 6j 12k  


and ˆ ˆ ˆF i 3j 6k   




ˆ ˆ ˆi j k

2 6 12

3 6

   





ˆ ˆ ˆi( 36 36) j(12 12 ) k(6 6 )        

ˆ ˆj(12 12 ) k(6 6 )      

But 0 


 12 + 12 = 0 or = –1

and 6 + 6 = 0 or = –1

Q.19 (2)

Pm1 m2

x (L–x)

Moment of inertia of the system about the axis of

rotation (through point P) is

I = m
1
x2 + m

2
(L – x)2

By work energy theorem,

Work done to set the rod rotating with angular velocity


0
= Increase in rotational kinetic energy

  22 2 2
0 1 2 0

1 1
W I m x m L x

2 2
      
 

For W to be minimum,
dW

0
dx



i.e.,    2
1 2 0

1
2m x m L x 1

2
      = 0

or m
1
x – m

2
(L – x) = 0

(
0
 0)

or (m
1
– m

2
) x = m

2
L

or x =
2

1 2

m L

m m

Q.20 (3)

Here,

Speed of the automobile

v = 54 km h–1 = 54 ×
5

18
ms–1 = 15 ms–1

Radius of the wheel of the automobile, R = 0.45 m

Moment of inertia of the wheel about its axis of rotation.

I = 3 kg m3

Time in which the vehicle brought torest, t = 15 s

The initial angular speed of the wheel is :


i
=

v

R
=

115ms

0.45m



=
1500

45
rad s–1 =

1500

45
rad s–1

and its final angular speed is


f
= 0 (as the vehicle comes to rest)

 The angular retardation of the wheel is

f i

t

 
  =

100
0

3
15s


=

100

45
rad s–2
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The magnitude of required torque is

= I || = (3 kgm2)
2100

rads
45

 
 
 

=
20

3
kg m2s–2 = 6.66 kgm2s–2

Q.21 (3)

Given, r = 50 cm = 0.5 m,= 2.0 rad s–2,
0
= 0

At the end of 2s,

Tangential acceleration, a
t
= r = 0.5 × 2 = 1 ms–2

Radial acceleration, a
r
=2r = (

0
+t)2r

 Net acceleration,

2 2 2 2 2
t ra a a 1 8 65 8ms     

Q.22 (4)

Time taken by the body to reach the bottom when it

rolls down on an inclined plane without slipping is given

by

2

2

k
2.1. 1

R
t

g sin

 
  

 


Since g is constant and l, R and sin are same for both

2 2
d
2 2

d
22

s s
22

k R
1 1

t R 2R
t 2Rk 11

5RR

 

  



d s

R 2
k , k R

52

 
    
 

=
3 5 15

2 7 14
  Þ t

d
> t

s

Hence, the sphere gets to the bottom first.

Q.23 (3)

Here, m
A

= m, m
B

= 2m

Both bodies A and B have equal kinetic energy of

rotation k
A

= k
B


2 2

A A B B

1 1
I I

2 2
  



2
A B
2

AB

I

I






......... (i)

Ratio of angular momenta,

A A A A B

B B B B A

L I I I

L I I I


  



[Using eqn. (i)]

A

B

I
1

I
 

( I
B

> I
A
)

 L
B

> L
A

Q.24 (2)

2
2s s

Sphere s s
2

2Cylinder c c
c c

1
IE I2

1E II
2

 
 



Here, I
s
=

22
mR

5
, I

c
=

21
mR

2

2 2
s

Sphere

2 2Cylinder
s

2
mRE 4 1 15

2E 5 4 5mR (2 )
5


   

 

Q.25 (1)

Here, 1 2   

Centre of mass of the system,

1 2 2
1

1 2 1 2

m 0 m m

m m m m

  
 

 




1
2 1

1 2

m

m m
  




  

Required moment of inertia of the system,

2 2
1 1 2 2I m m  

m1 m2

2
2 2

1 2 2 1 2
1 2

(m m m m )
(m m )

 



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2
21 2 1 2 1 2

2
1 21 2

m m (m m ) m m

m m(m m )


 






Q.26 (4)

Mass per unit area of disc = 2

M

R

Mass of removed portion of disc,

2

2

M R M
M '

2 4R

 
   
  

R
R/2

O'
O

Moment of inertia of remove portion about an axis

passing through centre of the disc O and perpendicular

to the plane of disc,

I’
O

= I
O’

+ M’d2

2 2 2 2 21 M R M R MR MR 3MR

2 4 2 4 2 32 16 32

   
          

   

When portion of disc would not have been removed,

the moment of inertia of complete disc about centre O

is

2
0

1
I MR

2


So, moment of inertia of the disc with removed portion

is

I = I
0
– I’

O
=

2 2
21 3MR 13MR

MR
2 32 32

 

Q.27 (2)

m = 3 kg, r = 40 cm = 40 × 10–2 m, F = 30 N

Moment of inertia of hollow cylinder about its axis =

mr2 = 3kg × (0.4)2 m2 = 0.48 kgm2

The torque is given by

= I

where I = moment of inertia

In the given case,  = rF, as the force is acting

perpendicularly to the radial vector.

 =
I


= 2 2

Fr F 30 30 100

mr 3 40mr 3 40 10


  
 

 = 25 rad s–2

Q.28 (1)

Initial angular momentum = I
1
+ I

2

Let  be angular speed of the combined system.

Final angular momentum = 2I

According to conservation of angular momentum

I
1
+ I

2
or = 1 2

2

 

Initial rotational kinetic energy.

E =
2 2
1 2

1
I( )

2
 

Final rotational kinetic energy.

E
f
=

2

2 21 2
1 2

1 1 1
(2I) (2 I) I( )

2 2 2 2

  
      

 

Loss of energy E = E
i
– E

f

=
2 2 2 2
1 2 1 2 1 2

I I
I( ) ( 2 )

2 4
       

=
2 2 2
1 2 1 2 1 2

I I
2 ( )

4 4
         

Q.29 (3)

Work done required to bring them rest

W=KE

W =
21

I
2


W  I for same (t)

W
A

: W
B

: W
C

=
2 2 22 1

MR : MR : MR
5 2

=
2 1

: :1
5 2

= 4 : 5 : 10

 W
C

> W
B

> W
A

Q.30 (2)

According to law of conservation of linear momentum,

mv + 4 m × 0 = 4 mv2 + 0

v’ =
v

4

realtive velocity of separation v / 4
e

Re lative velocityof approach v
 

1
e 0.25

4
 

Q.31 (4)
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0(r r ) F   
 

0
ˆ ˆ ˆ ˆ ˆ ˆr r (2i 0j – 3k) (2i 2j – 2k)    

 

= ˆ ˆ ˆ0i 2j – k

ˆ ˆ ˆi j k
ˆ ˆ ˆ0 2 1 7i 4k 8k

4 5 6
      





Q.32 (4)


ex

= 0

ex = 0

So,
dL

dt
= 0

i.e. L = constant

So angular momentum remains constant.

Q.33 (2)

2
1

1
K mv

2
 

2
2 2 2 2

t r

1 1 1 1 2 v
K K mv I mv mr

2 2 2 2 5 r

  
        

  

27
mv

10


So,
t

t r

K 5

K K 7




Q.34 (1)

0

2
3rpm 3 rad / sec

60 10

 
    

2 2
0 2     

   
2

20 2 2 2
10

 
     
 

21
rad / sec

800
  

 
2

2

4

4
2

mR 16100
I

2 2 10

 
 
   

6
4

16 1
I 2 10 N.m

80010

   
           

   

Q.35 (1)

work done =KE

  2 2 2
i

1 1 3
KE I mv mv

2 2 4
   

 
22 43 3

100 20 10 100 400 10 3J
4 4

         

Q.36 (2)

Q.37 (4)

Q.38 (3)

Q.39 (1)

2

1I =
2

mR
2

2

mR
I =

4

I
k =

m

2
1 1

2
2 2

k I mR / 2
= = = 2 :1

k I mR / 4


Q.40 (1)

=
0
+t

0ω – ω
α =

t

 3120 –1200
= rpm

16s

21920 2π
= × rad / s

16 60

= 4rad/s2
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Q.1 (3)

1 1 2 2
G

1 2

m Δx +m Δx
ΔX =

m + m

210×6 + 30(Δx )
0 =

40

x
2
= – 2 cm

Blocks of mass 30 kg will to move towards 10 kg.

Q.2 [10]

v v/3

5gRPi=Pf

Considering Only Horizontal direction

  v
(75v) + 0 = 50 5gR + 75

3

v
75 v - = 50 100

3

 
 
 

v = 10 m/s

Q.3 [6]

P
i
= P

f

60 × v = (60 + 120) × 2

60 × v = 180 × 2

V = 6 m/s

Q.4 (2)

Ratio of masses = 1 : 1 : 2

i.e. m: m : 2m

From conservation of momentum

v=?

2mm

m
40 m/s

30 m/s

i fP P
 

0 = (–30i – 40j)m + 2mv

v =
ˆ ˆ30i 40 j

2


= 15 î + 20 ĵ m/s

|m/s

Q.5 [2]

mm
3m

3m

m

CM

ˆ ˆm(3i) m(3j)
R

3m






CM
ˆ ˆR i j 



| R | 2


x=2

Q.6 (3)
Applying constant retardation equation

 
2

2v
v 2a 4

3

 
  

 

28v
a

9 8



....(i)

And now 02 = V2 – 2a (4 +x)

 
2

2 v
v 2 4 x

9

 
   

 

8 + 2 x = 9
2 x = 1

1
x

2


Q.7 [8]





2

2

x
1

L

 
 

 

A

x

Bdm

dm

dx





2

2

x
1

L

 
 

 

x
com

=

xdm

dm



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=

2
L

0 20

2
L

0 20

x
x (1 )dx

L
x

(1 )dx
L

 

 





=

L2 4
3

L
2

20 0

2 L3L

20 2

0

x xx
(x )dx 2 4LL

x x(1 )dx xL 3L

 
 

 


   
 





=

2 2 2L L L

2 4 4 3L

2LL 8
L

33

   
   

    
 

 
 

So, 

Q.8 (1)

1 1 2 2
com

1 2

ˆ ˆ ˆ ˆ ˆ ˆm r m r 1(i 2 j k) 3( 3i 2j k)
r

m m 1 3

      
 

 

 

ˆ ˆ ˆ2i j k   

2 2 2ˆ ˆ ˆ| 2i j k | (2) (1) (1) 6     

Q.9 (2)

according to Newton’s second law of motion:
dp

F
dt



And average force if
p

F
t





Herep = 2 × 0.15 × 12 = 3.6kgm/s
F=100N

p 3.6
t 0.036s

F 100


   

Q.10 [12]

Impulse = change in momentum

= m [v – (–v)] = 2 mv

= 2 × 0.4 × 15 = 12 Ns

Q.11 (2)

f ip p p  
  

= (–) 10 m – 10m
= – 20m

= – 20 × 0.05
= – 1 kg m/s

Force =
p

t





1 1000

0.005 5
 

=200 N

Q.12 (2)

2 2
1

1 α
θ = α(1) = = 5 rad, α = 10rad / sec

2 2

2
2

1
θ = α(2) = 2α = 2×10 = 20rad

2


2
– 

1
= 20 – 5 = 15 radian

Q.13 (3)

Q.14 (2)

K
total

= K
rotational

+ K
Translational

2 2
total cm cm

1 1
K = I mv

2 2


v
cm

= R for pure rolling

2
cm

2
I = mR

5

2
2 2 2cm

Rot cm cm2

1 1 2 v 1
K = I ω mR mv

2 2 5 R 5
   

2 2 2
total cm cm cm

1 1 7
K = mv mv mv

5 2 10
 

2
cm

Rot

2Total
cm

1
mV

K 25
7K 7mV

10

 

Q.15 (1)

Solid sphere

com

R

Apply parallel axis theorem

2
com

2
I = MR

5

I
Tangent

= I
com

+ Ma2
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2 22
= MR + MR

5

27
= MR

5

Hollow sphere

com

R

Apply parallel axis theorem

2
com

2
I = MR

3

I
Tangent

= I
com

+ Ma2

2 22
= MR + MR

3

25
= MR

3

x

Ring

y

Perpendicular axis theorem

I
x

= I
y
= I

I
z
= I

x
+ I

y

MR2 = I + I

2MR
I =

2

x

Disc

y

Perpendicular axis theorem

I
x

= I
y
= I

I
z
= I

x
+ I

y

2MR
= I + I

2

2MR
I =

4

Q.16 (2)

26 2
d

t t
dt


 

ω
3 2

10

dω = 2t - t

3 2ω = 10 + 2t - t

3 210 2
d

t t
dt


  

θ
3 2

4

dθ = 10 + 2t - t

θ 4 3

4

t t
dθ =10t + -

2 3

4 3t t
θ = 4 +10t + -

2 3

Q.17 (4)

a =

2

2

mgsin R

(I mR )





For solid cylinder I =
2mR

2

a
c
=

2
g sin

3


For solid sphere 22
I mR

5


a
s

5
gsin

7
 

Velocity when they reach at - ground

v2 = 2 as  u 0

v 2as
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 c c

s s

v a
S Diplacement of COM,S Same

v a
  

c

S

V 14

V 15


Q.18 [5]

R R

Initial Final

GPE = 0

m

m

m
m

By MEC

mg (2R) =
2 2

disc particle

1 1
I I

2 2
  

mg(2R) =

2
2 21 mR

mR
2 2

 
  

 

mg2R

2
2 2 21 3mR 3

m R
2 2 4

 
    

 

2 8g 80

3R 3R
    

Given

x 80
4

3R 3R
  

16x 80

3R 3R


x 5

Q.19 [5]

2
2ML

I MK
12

 

L 10 3
K 5

12 4 3
  



Q.20 (3)

I
1
= I

3
=

2MR

4

I
2
=

2MR

4
+ MR2 = 25

MR
4

= I
4

So, I = I
1
+ I

2
+ I

3
+ I

4

=
2

2MR 5
MR

2 2


= 3MR2, Putting R =
a

2

I =
23Ma

4
, So x = 3

Q.21 (4)

  2F dm x 
L

2

0

m
dx x

l

 
  

 


2
2m L

L 2
 

=
2m L

2



2
F

mL
 

2
F

0.25 0.5




16 F

= 4 F

dxx 



Q.22 (3)
Net loss in PE = Gain in KE

2

2 2 21 1 1 v
12gh – 3gh = 3v + 12v + 12r

2 2 2 r

 
    

 
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  21
9gh = 3 + 2 +12 v

2

2 2gh 1 8
v = v = gh

3 2 3


8
3

3
x  

Q.23 (3)

34

N 2

m

3m

S
N1


mg

f = N
2

N
1
= mg

2N × sinθ = mg cosθ
2




2

mg
N cot θ

2


w

2
f 2

mg
cot θF 2

F mg
(mg) cotθ

2


 

  
 

2

1

4
1

cot θ





3

109


Q.24 [18]

F.R 

I F.R 

   2 3
45 12t 3t

2
  

 2 3 2
12t 3t

2 9
   

24t t  

2d
4t t

dt


 

 2d 4t t dt   

t2 3

0

4t t
d

2 3

 
   

 
 

 
3 3

2 2t t
0 2t 2t

3 3
      

For direction change= 0

3
2 t

2t 0 t 6sec
3

   

Now

3
2d t

2t –
dt 3




36
2

0 0

t
d (2t )dt

3



   

 
2 4

3

0

2t t
– 0

3 12

 
    

 

3 42 1
(6) – .(6)

3 12
 

= 144 – 108
= 36

No. of rotation
36 18

2 2


  

  

K 18
So K 18  

 
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EXERCISE-I (MHT CET LEVEL)

Q.1 (2)

Q.2 (1)

Q.3 (4)

Gravitational constant = G

2 2

2
1 2

Fr N m
G

m m kg




Unit of G is

2

2

N m

kg



The value of G is constant and it does not depend on

the nature of medium in which bodies are kept.

Q.4 (1)

Change in force of gravity

2 2

3

M
G m

GMm

R R
 

(Only due to mass
3

M
due to shell gravitational field

is zero (inside the shell))

2

2

3

GMm

R


Q.5 (2)

Q.6 (2)

Because acceleration due to gravity increases

Q.7 (2)

2 2
g M R 2M R 1

g M R M 2R 2

      
          


2g 9.8

g 4.9 m /s
2 2

   

Q.8 (1)

Q.9 (4)

Q.10 (3)

Q.11 (2)

Q.12 (1)

e 2

2GM
v 2gR R

R
 

3

2

4
2Gd R

3 R
R




A
e

B

V
as v R for samedensity, 2

V
 

Q.13 (3)

2 2

G 100 G 10000

x (1 x)

 





10 100

x 1 x



x =

1

11
m

Q.14 (2)

mgh mg 3R 3
U mgR

h 3R 41 1
R R


   

 

Q.15 (4)

Change in potential energy in displacing a body from

r
1

to r
2

is given by

1 2

1 1
U GMm

r r

 
   

 
=

1 1 GMm
GMm

2R 3R 6R

 
  

 

Q.16 (4)

Gravitational field inside the shell is zero, so no work

required.

Q.17 (2)

e2 R ; 2e e m m mv g v g R 

e

e

R
24

R

6 4

e e e e

em m m

v g g R

gv g R
  

Q.18 (3)

x=0 1 2 4 8

1 1 1 1
....

1 2 4 8

GM
V G

r

 
         

 

1
2

1
1

2

G G

 
 

    
 
 

GRAVITATION
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Q.19 (4)

Conservation of energy

2
e

1 GMm
0 MV

2 (R R)
 



 e

GM
V

R


We have escape velocity

2
e

GM
v

R


and,    
' 2 2

2

e
e

vGM GM
v

R h R R
  

 

1

2
f 

Q.20 (3)

Q.21 (3)

Geo-stationary satellites are also called synchronous

satellite. They always remain about the same path on

equater, i.e., it has a period of exactly one day (86400

sec)

So orbit radius
3r

T 2
GM

 
  
 
 

comes out to be

42400km, which is nearly equal to the circumference of

earth. So height of Geostationary satellite from the earth

surface is 42,400–6400=36,000km.

Q.22 (1)

Energy required E = E
f
– E

i



2

1 GM GMm GMm
E m

2 R 2R (R 2R) R

   
            

GMm GMm GMm GMm

6R 2R R 2R
   

Q.23 (2)

Q.24 (4)

For geostationary satellite

3r
T 2 24 hour

GM
  

11 24
3/2 6.67 10 5.97 10

r 24 3600
2

  
  



 r = 42400 km

Height above surface of earth is

42400 – 6400 =36000 km

e6R

Where, R
e
= 6400 km

Q.25 (2)

Time period of communication satellite T
c
= 1 day

Time period of another satellite = T
s

3/ 2

3/ 2s s

c c

T r
(4)

T r

 
  
 

 3 / 2
s sT T (4) 8 days  

Q.26 (3)

Q.27 (1)

Q.28 (1)

Q.29 (2)

2

dA L

dt m
  Constant

Q.30 (3)

Q.31 (3)

Q.32 (2)

EXERCISE-II (NEET LEVEL)

Q.1 (4)

2

1
F

r
 . If r becomes double then F reduces to

F

4

Q.2 (3)

Centripetal force provided by the gravitational force

of attraction between two particles

i.e.

2

2

mv Gm m

R (2R)




1 Gm
v

2 R
 

m
R

O R

m

Q.3 (1)

k represents gravitational constant which depends

only on the system of units.

Q.4 (2)

The value of g at the height h from the surface of
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earth,
2h

g g 1
R

    
 

The value of g at depth x below the surface of earth,

x
g g 1

R

    
 

These two are given equal, hence
2h x

1 1
R R

   
     

   

On solving, we get x = 2h

Q.5 (1)

4
g GR

3
  . If  = constant then

1 1

2 2

g R

g R


Q.6 (3)

Q.7 (3)
Q.8 (2)

True weight equator, W = mg observed weight at

equator,

3
' '

5
W mg mg 

At equator, latitude  = 0 Using the formula,

mg’ = mg – mR 2 cos2 

2 2 23
cos 0

5
mg mg mR mg mR     

2 3 2

5 5
mR mg mg    

1/2
2

5

g

R

 
   

 

1/2

–4

6

2 9.8
7.8 / .

5 6.4 10
rad s

 
   

  

Q.9 (2)

Q.10 (3)

Value of g decreases when we go from poles to equator.

Q.11 (3)

Acceleration due to gravity at poles is independent of

the angular speed of earth

Q.12 (4)

Range of projectile
2u sin 2

R
g




if u and  are constant then
1

R
g



em

e m

gR

R g
 

m

e

R 1

R 0.2
  e

m

R
R

0.2
 R

m
= 5R

e

Q.13 (1)

4
g G R

3
  

g R 
e e e

m m m

g R

g R


 



e

m

R6 5

1 3 R
   m e

5
R R

18


Q.14 (3)

mgh
U

1 h R
 



Substituting R = 5h

We get
mgh 5

U mgh
1 1 5 6

  


Q.15 (1)

GMm
U

r
 


11 22 24

28 6.67 10 7.4 10 6 10
7.79 10

r

    
 

r = 3.8 × 108 m

Q.16 (1)

Gravitational potential at mid point

1 2GM GM
V

d 2 d 2

 
 

Now, PE = m × V = 1 2

2Gm
(M M )

d




[m = mass of particle]

So, for projecting particle from mid point to infinity

KE = | PE |


2

1 2

1 2Gm
mv (M M )

2 d
   1 2G(M M )

v 2
d




Q.17 (2)

If missile launched with escape velocity then it will

escape from the gravitational field and at infinity its
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total energy becomes zero.

But if the velocity of projection is less than escape

velocity then sum of energies will be negative. This

shows that attractive force is working on the satellite.

Q.18 (1)

Potential at the centre due to single mass =
GM

L 2



L2

L

mm

mm

Potential at the centre due to all four masses

=
GM GM

4 4 2
LL 2

 

=
GM

32
L

 

Q.19 (2)

The escape vaeloccity from earth is gien by

2 ....(i)e ev gR The orbital velocity of a satellite

revolving around earth is given by 0
( )

e

e

GM
v

R h




where, M
e

= mass of earth, R
e

= radius of earth, h =

height of stellite form surface of earth. by teh realtion

2
e eGM gR

So,

2

0 ....(ii)
( )

e

e

gR
v

R h




Dividing equation (i) by (ii), we get]

e

0

2(R )

( )
e

e

hv

v R




Given, 0 .
2
ev

v 

e2(R )2 e

e e

hv

v R




Squaring on both side, we get

2( )
4 e

e

R h

R




or 2 i.e.,e e eR h R h R  

Q.20 (2)

e

8
v R G

3
  

ev R 

Q.21 (4)

2

2

GMm mv

rr


2 GM
v

r


Q.22 (2)

GM
v

r
 if r

1
> r

2
then v

1
< v

2

Orbital speed of satellite does not depends upon the

mass of the satellite

Q.23 (1)

0

GM
v

(R h)




Q.24 (1)

A we know, orbital speed, v
orb

GM

r
 Time period T =

2 2

ord

r r
r

v GM

 


2
2

2 32 4r r
T r

GMGM

  
   
 

2 2
2

3

4
4

T
K GMK

r GM


     

Q.25 (2)

T  r3/2. If r becomes double then time period will

becomes (2)3/2 times.

So new time period will be 24 2 2 hr i.e. T = 48 2

hours

Q.26 (3)

Areal velocity of the planet remains constant. If the

areas A and B are equal then t
1

= t
2
.

Q.27 (2)

As per Kepler’s Law of orbits.
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Q.28 (4)

2 3T r 

3 / 2

1 1

2 2

T r

T r

 
  
 

Q.29 (1)

Angular momentum = Mass ×Orbital velocity ×Radius

= 0 0

0

GM
m R m GMR

R

 
   
 
 

Q.30 (1)

T r3/2

EXERCISE-III (JEE MAIN LEVEL)

Q.1 (3)

In horizontal direction

Net force = 2

G 3 mm

12d
cos30° –

2

2

G m

4d
cos60°

T U

Q

m

(m)

2d

P

3 d

( )3 m

( )2 3 d

( )3 m
3d d

R

=
2

2

G m

8d
–

2

2

G m

8d
= 0

in vertical direction

Net force =

2

2

G 3 m

12d
cos 60° +

2

2

G 3 m

3d
+

2

2

G m

4d

cos30°

=

2

2

3 G m

24d
+

2

2

3G m

3d
+

2

2

3G m

8d

=
2

2

3G m

d

1 8 3

24

  
 
 

=
2

2

3G m

2d
along SQ

Q.2 (2)

1 2

2

G m m
F

r


 
1 2

2

G m m F
F'

42r
 

Q.3 (2)

Net torque = F
2

.
2


– F

1
.

2



= (F
2
– F

1
)

2



F
2

= mg
H2

= mg 22H
1–

R

 
 
 

F
1

= mg
H1

= mg 12H
1–

R

 
 
 

 = (F
2

– F
1
)

2


= 1 2mg (H – H )

R


Ans.

Q.4 (2)

2

e

g g

4 h
1

R


 
 

 

e

h
2 1

R
 

h = R
e

Q.5 (2)

e

2
e

GMg

4 (R h)




e e

2 2
e

GM GM

4R (R h)




R
e
+ h = 2R

e

R
e
= h

Q.6 (3)
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h

r
g g 1

R

 
  

 

h 2

GM r
g 1

RR

 
  

 

3

G M r 1
constant d

rR
  

Q.7 (4)

g =

'
e e

2 2
e e

GM GM

R (5R )


3 3
e e

2 2
e e

4 4
R (5R ) '

3 3
R (5R )

   


 = 5’

Q.8 (2)

g = 2

GM

R

Q.9 (2)

dv = – Edr

=
k

r
dr

Integrating both sides

 
i

v

v
v = k  

1

r

d
k n r

v – v
i

= k n
i

r

d

v = v
i
+ k n

i

r

d Ans.

Q.10 (3)

Initial total energy = Initial kinetic energy + initial

potential energy

=
1

2
m (0)2 +

0

GMm
–

R

 
 
 

=
0

GMm
–

R

Total energy, when it reaches the surface of earth =
1

2

mv2 +
GMm

–
R

 
 
 

Applying energy conservation,

1

2
mv2 –

GMm

R
=

0

GMm
–

R

v =
0

1 1
2GM –

R R

 
 
 

Ans.

Q.11 (2)

By geometry,

x2 +
2a

4
= a2 and F

1
= F

2

F

F2

F1
x

a

x2 =
23a

4

x =
3a

2

F
net

= F =
2

2

Gm

x
=

4

3

2

2

Gm

a

Q.12 (2)

Initial kinetic energy = 0

Initial potential energy = –
2Gm

a
–

2Gm

a

Fixed

Fixed

= –
22Gm

a

Total initial energy = –
22Gm

a

Now, kinetic energy =
1

2
mv2



Gravitation

37P H Y S I C S

Potential energy = –
22Gm

a / 2
–

2Gm

a / 2
= –

24Gm

a

Total energy =
1

2
mv2 –

24Gm

a

22Gm

a
=

1

2
mv2

4Gm

a
= v

v =
Gm

2
a

Ans.

Q.13 (1)

2 21 1
mv ' 2 mv

2 2
 

0v ' 2 v

ev ' v

 so escape.

Q.14 (1)

g
A

=

3
A

2
A

4
G R

3
R

 
; g

B
=

3
B

2
B

4
G R

3
R

 

R
A

=2R
B

 g
A

= 2g
B

V
es

= 2gR

(V
es
)

A
= A A B B2g R 2 2g R

(V
es
)

B
= B B2g R

A

B

v

v = 2

Q.15 (3)

V
e

=
2GM

R

V = KV
e

=
2GM

K
R

Initial total energy =
1

2
mv2 –

2GMm

R

=
1

2
m.K2

2GM

R
–

2GMm

R

Final total energy =
1

2
m02 –

2GMm

x

Applying energy conservation :

1

2
mx2.

2GM

R
–

2GMm

R
= 0 –

2GMm

x

1

x
=

1

R
–

2x

R

x = 2

R

1– k
Ans.

Q.16 (2)

GmM GmM
W

R nR R
 



GMm 1 GMm n
1

R nH R n 1

   
        

n
mgR

n 1

 
  

 

Q.17 (3)

2
2 eGM m1 g Re m

mv
2 Re h Re 4Re

 
 

21 Mg Re
mv

2 5


Q.18 (2)

2

GMm

r
=

2mv

r

v = 2

GM

r

M

r

V
m

T =
2 r

v


=

3

22 r

GM


=

3

2

3

2 r

4
G r

3



 
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T 
1


Ans.

Q.19 (2)

v (Move tangentially)

Q.20 (1)

4mm

Double star system

2
1 1 2

2
2 12

k 1/ 2I m

k m1/ 2I


 



Q.21 (4)

P.E.= – 1 2Gm m

r

T.E. = – 1 2Gm m

2r

K.E. = + 1 2Gm m

2r

Q.22 (1)

w
e
= 50 × 10 = 500 N

w
p
= 50 × 5 = 250 N

Hence option A is correct

Q.23 (1)

1 2Gm m
E

2r


A

A B

vE 1.4

E v 1
 

Q.24 (2)

2GMm mv

rr


Q.25 (1)

1
v

r


A B

B A

v r R

v r R






Q.26 (1)

A L
=

T 2m

L =
2mA

T

Q.27 (3)

2 / 3r T

2 / 3

1

2

r 3 1

r 24 4

 
  
 

2 r 2 r
T v

v T

 
  

1 1 1

2 2 2

v r T 1 24 2

v r T 4 3 1

     
       

    

PREVIOUS YEAR’S

Q.1 [0008]

v =
R

GM
=

2

2.11
~ 8km/sec.

Q.2 [0004]

W
ext

+ W
g
= 4K = 0

W
ext

– m
4
V = 0

Wext = 2 ×
2

4
= 4 J

Q.3 [0023]

GM

)a(2
T

2/3
 so 2

32

GT

)a(4
M




Putting values we get
M = 2 × 1021 kg

Q.4 [837.33]
The particle will perform SHM













R

g

R

GM
w

3

=
4

gR3

4

R
Aw

2
2 
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=
4

R
A

R

g 2
2  =

4

gR3

= A2 –
4

R 2

=
4

3
R2

A2 = R2

A = R

t =
w3


=

g

R

3



=
3

14.3
× 800 837.33 sec. Ans.

Q.5 [0003]

w.r.t. COM K.E. =
2

1
(red mass) vrel

2

w.r.t. COMAngular momentum =
2

mr
vrel

 Equating energy

0

2
2
0

22

1

r

Gm
v

m
 =

r

Gm
v

m
rel

2
2

22

1


(Here vrel is relative velocity | to line as vrel along the
line joining is zero when separation is either min. or
max.)
Angular momentum conservation

2
0mr

v0 =
2

mr
vrel

 vrel =
r

vr 00

solving 3r2 – 4rr0 + r0
2 = 0

 rmax = r0 rmin =
3
0r

ratio = 3 (ans)

Q.6 [3000]

T =
V

R2
= 2

GM

R3

=
GP

3
= 3 ×103 sec = 3000

sec.

Q.7 [8]

0µV
2

1

d

M3GM 2
rel 



2
rel

22

V
M4

M3

2

1

d

GM3



 2

relV =
d

GM8

Vrel =
d

GM8
 = 8 Ans.

Q.8 [0023]

GM

)a(2
T

2/3
 so 2

32

GT

)a(4
M




Putting values we get

M =2×1021 kg

Q.9 [0004]

W
ext

+ W
g
= 4K = 0

W
ext

– m
4
V = 0

Wext = 2 ×
2

4
= 4 J

Q.10 [0023]

GM

)a(2
T

2/3
 so 2

32

GT

)a(4
M




Putting values we get

M = 2 × 1021 kg

Q.11 (4)
According to kepler’ law, the angular momentum of
planet is constant.
Gravitational force acts along the line joining the earth
and sun.

Q.12 (4)

Binding energy =
GMm

2r

Kinetic energy =
1

2
mv2 =

GMm

2r

Total energy = –
GMm

2r

Q.13 (3)

Orbital velocity, 0

GM 1
V

r r
 

 orbital velocity is greater when r is smaller

Q.14 (3)
A person sitting in an artificial satellite revolving around
the earth feels weight less since the gravitational pull
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of earth is cancelled out by centrifugal force of circular
motion.

Q.15 (3)

Factual.

Q.16 (4)

(a) Total energy is always conserved. and negative

(b) Angular momentum is always conserved.

(c) Net Torque about sun is always zero.

(d) Linear momentum is not constant as the direction

of velocity changes continously.

PREVIOUS YEAR’S

MHT CET
Q.1 (4)
Q.2 (3)
Q.3 (4)
Q.4 (3)
Q.5 (1)
Q.6 (2)
Q.7 (2)
Q.8 (1)
Q.9 (3)

Q.10 (4)
Q.11 (4)

Q.12 (2)

Q.13 (4)
Q.14 (3)
Q.15 (1)
Q.16 (1)
Q.17 (3)
Q.18 (1)
Q.19 (4)
Q.20 (4)
Q.21 (1)
Q.22 (3)
Q.23 (3)
Q.24 (1)
Q.25 (2)
Q.26 (4)
Q.27 (2)
Q.28 (4)
Q.29 (4)
Q.30 (4)
Q.31 (3)
Q.32 (4)

Q.33 (4)

Q.34 (3)
According to Kepler’s third law, time period

2
2 34

T a
G M




where, a is the semi - major axis

1/330076 86400 365 6.67 2 10
a

4 3.14 3.14

     
   

   

=27×1012 m
Also in case of ellipse

2a = perihelion + aphelion
Aphelion = 2a - perihelion
= 2 × 2.7 × 1012 - 8.9 × 1010

5.3×1012 m

Q.35 (1)

According to deduction of Kepler’s third law and with
the help of Newton’s law, the law of period is given by

or
2

2 34
T r

GM




3r
T 2

GM
  

Where, r is the radius of orbit and M is mass of the
planet or star.

As satellite is very close of the planet, thus r = R
Also mass (M) = density () × volume (V)

34
R

3
  

3

3

R 3
T 2

4 GG R
3


  

 

Q.36 (3)
According to conservation of energy,

Total energy of asteroid at 10R
e
= Total energy of aster-

oid at surface of earth
U

1
+ K

1
= U

2
+ K

2

2 2e e
0

e e

GM m 1 Gm m 1
mv mv

10R 2 R 2

 
   

2 2e
0

e

9 GM m 1 1
mv mv

10 R 2 2
  

2 2
0

e

9 2GM
v v

10 R
   

 
22 2

e 0

9
v v v

10
 

where, v
e
= escape velocity = 11.2 km/s

   
2 22 9

v 112 12
10

   

 
2 19

11.2 144 16 kms
10

   

Q.37 (3)
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For time period of a satellite, we can write

1/232 r 2 r r
T 2

v GMGM

r

  
    

 

According to question,

 
1/23

6400 36000
24 2

GM

 
  

  

and for spy satellite,
 

1/23
6400

T ' 2
GM

 
  

  

 
 

1
3 2

3

6400T'

24 6400 36000

 
   

  

T’ = (24) × (0.4)3

T’ = 1.53 h

Q.38 (3)
The value of acceleration due to gravity due to rotation
of earth

g = g – Rcos2
At poles, = 90°

 g
p
= g – Rcos290° = g

At equator, 

 g
e
= g – Rcos20° = g – 2R

 g
p
– g

e
= g – g + R2 = R2

Q.39 (3)

The acceleration due to gravity in terms of density is

given by

4
g GR g R

3
    

m m m

e e e

g R

g R


 



Here,
m

e

g 1

g 6
 and

e

m

5

3







m m

e e

R R1 3 5

6 R 5 R 18
   

or m e

5
R R

18


Q.40 (3)
For a satellite moving in an orbit close to the planet’s
surface,

2mv
mg

R


 2v gR .....(i)

The escape speed of satellite, v
e

= 2gR

2
ev 2gR  .....(ii)

Kinetic energy, KE =
21

mv
2

[using Eqs. (i) and (ii)]

 
 

2
e

e

2

1
mvKE 2gR2 2

1KE gRmv
2

   

Q.41 (1)
The value of acceleration due to gravity due to rotation
of earth is given by

2g ' g R cos   

At equator, 0 

2g ' g R   

Weight of person at equator, mg = mg – mR2

23
mg mg mR

5
   

2 2g 2g
or

5R 5R
    

NEET / AIPMT

Q.1 (2)

A

B

S
C

VA

VCperihelion

aphelion

Point A is perihelion and C is aphelion.

So, V
A

> V
B

> V
C

So, K
A

> K
B

> K
C

Q.2 (4)

If Universal Gravitational constant becomes ten times,

then G = 10 G

So, acceleration due to gravity increases.

i.e. (4) is wrong option.

Q.3 (3)

work done = f iu u


 

GmM GmM

R h R

 



Now h = R

GmM GmM GmM
w

2R R 2R


  

Now 2

Gm
g

R


So
2mgR mgR

w
2R 2

 
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Q.4 (4)

g at a depth
d

d g 1
R

 
  

 

R
d

2


g
g

2
 

w
w

2
 

w 100N 

Q.5 (1)
Q.6 (3)
Q.7 (3)
Q.8 (3)
Q.9 (1)
. Gravitational constant = [M–1L3T–2]

Gravitational potential energy = [ML2T–2]
Gravitational potenital = [L2T–2]
Gravitational intensity = [LT–2]

Q.10 (1)

I
g
=

F

m

= 3

3

60 10
= 50 N / kg

JEE MAIN
Q.1 (1)

d

m m

M d

m md

d

2a

2 2Gm Gm GMm
U = - ×4- ×2- ×4 2

d d2d

2Gm
U = - (4 + 2)m + 4 2M

d
 
 

Q.2 (2)

mg
h
= mg

2
R

R h

 
 

 

2
g R

g
3 R h

 
  

 

1 R

R h3




R + h = 3R

 h 3 –1 R

=0.732 ×6400 km

=4685km

Q.3 (4)

According to Kepler’s 3rd law

2 3

1 1

2 2

T r
=

T r

   
   
   

2 3
1 R 1

= =
T 3R 27

   
   
   

T2 = 27

T = 3 3 years

Q.4 (4)

2r=h

m = mass of earth

r

2

Gm
g

r
 (At surface of earth)

2

Gm
g '

(r h)




2

Gm
g '

(3r)


2

Gm
g '

9r


g
g '

9


Q.5 (2)

Q.6 (1)

Q.7 (6)

Q.8 (4)

R

r

g


r
2



Effective acceleration due to gravity is the resultant of
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g & r2 whose direction & magnitude depends upon .

hence assertion is false.

When  = º (at equator), effective acceleration is

radially inward.

Q.9 (1)

Since it is universal law so it hold good for any pair of

bodies.

The value of g at centre is zero

So, Statement I and Statement II are true.

Q.10 (3)

Given T
A

= 2T
B

We know that Time period of Revolution

2 3T r

2 3

A A

B B

T r
= - Gravitation

T r

   
   
   

2 3

B A

B B

2T r
=

T r

   
   
   

3 3
B A4r = r

Q.11 (3)

2

2

Gm
F

r


2

4m 2m
G

3 3
F'

r

   
   

   

8
F' F

9


Q.12 (1)

eV
(A)

= 12
km

s

r
B

=
1

2
r

A

Density
(B)

= 4(Density)
A







V
e
=

34
2G R

2GM 3
R R

 


V
e
=R 


e(B) B B

e(A) A A

v r 1 1
4 2 1

v r 2 2


    



V
e(B)

= V
e(A)

=12 km/s

Q.13 (2)

We know that

(Time period)2 (Radius of orbit)3

2 3

1 1

2 2

T R
=

T R

   
    

   

R
2
= 3R

1

32
1

2 3
2 1

R7
=

T 27R


2
2T 27 49  

2T 36hrs. 

Q.14 (2)

d = 13 m

F
0
=

2

2

Gm

d

F = F
0
+ 2 0F

cos45
2



F = F
0

1
1

2

 
 

 

F =

2

2

Gm 1
1

d 2

 
 

 

F =

2

2

G(100) 1
1

(13) 2

 
 

 

F 100G

Q.15 (1)

2
g ' R

g r

 
  
 

2

R
g ' g

5
R

4

 
 

  
  
 

2
4R

g
5R

 
  

 
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16
g ' g

25


g = g – g’

16
g g

25
 

9
g

25


g 9
100% 100 36%

g 25


   

Q.16 (1)

2h
g ' g 1

R

 
  

 

 g 992 32
g ' g 1

6400 100

 
   

 

mg – mg ' g g '
100 100

mg g


  

99g
g

1100 100 100 1%
g 100


    

Q.17 (1)
Escape velocity of a body on any planet of mass M
and radius R is given by following equation -

2GM

R
escV , where G is universal gravitational

constant.
Let projected velocity of body be u.

Then
1 2GM

3 R
u =

Let the maximum height attained by the body be h.
Then appying law of conservation of energy,
E

A
= E

B

K
A

+ U
A

= K
B

+ U
B

21 GMm GMm
mu 0

2 R R h
   



1 1 2GM GMm GMm
m

2 9 R R R h
     



GMm GMm GMm

9R R R h
   



–8GMm GMm

9R R h
  



8(R h) 9R  

8h R 

R 6400
800

8 8
  h = km

Q.18 (2)

4m
Earth 3r

4r

3m

0

GMm
T.E.

2r




A A B

B B A

T.E. m r

T.E. m r
 

4 4r
·

3 3r


A

B

T.E. 16

T.E. 9


Q.19 (2)

Escape velocity Ve =
2GM

R

As V = V
e
= 

2GM

R

Initial total energy =
1

2
mv2 –

GMm

R
...(1)

21 2GM GMm
m . –

2 R R
 

Find total energy =  
21 GMm

m 0
2 x

 ...(2)
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By energy conservation (1) = (2)

21 2Gm GMm GMm
m 0

2 R R x
   

21 1

x R R


  Hence

2

R
x

1




Q.20 (4)

g = 2

GM

R

M = constant g < 2

1

R

g
100

g


= – 2

R
100

R



% change = – 2[–2]

% change in g = 4%

increase by 4%

Q.21 (2)

2h d
g 1 g 1

R R

   
     

   

2h d

R R


h = d
= 2

Q.22 (1)

i

GMm
U

R




f

GMm
U

4R
 

f i

3GMm
U U U

4R
   

=
3

mgR
4

=
53

1 10 64 10
4
   

= 48MJ
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10 219.6 10 /N m 
Q.4 (3)

For a perfectly rigid body strain produced is zero for

the given force applied, so Y = stress/strain = 

Q.5 (2)

Yougs’s modulus of wire does not vary with dimention

fo wire. It is a constant quantity.

Q.6 (2)

Q.7 (1)

Q.8 (3)

Q.9 (3)

Q.10 (2)

Q.11 (2)

r
r


   



6mm 30º
0.18º

1m




Q.12 (4)

Q.13 (2)

Compressibility of water, K= 45.4×10-11 Pa-1

density of water P = 103kg/m3 depth of ocean, h = 2700

m we have to find
V

V


=?

As we know, compressibility,

1 ( / )
( )

V V
K P Pgh

B P
  



SO, ( / )V V KPgh

= 45.4 ×10-11 ×103 ×10 × 2700

= 1.2258 × 10-2

Q.14 (4)

Q.15 (2)

EXERCISE-I (MHT CET LEVEL)

Q.1 (2)
Maximum possible strain =0.2/100

4
4 2

9

10 100
7.1 10

(7 10 ) 0.2

F
A

Y strain

m

 



  

 

Q.2 (3)

As shown in the figure, the wires will have the same
Young’s modulus (same material and the length of the

wire of area of cross- section 3A will be
3


same volume

as wire 1).

For wire 1, ....( )

F

AY i
x






For wire 2,

'

3 ....( )

3

F

AY ii
x




 
 
 



From (i) and (ii),
'

3 3

F F

A x A x
  
 

 

' 9F F 
Q.3 (3)

6

3

50 10

0.5 10

2

F

AY





 
 



6 3

250 9.8 2

50 10 0.5 10

2

 


 

 

MECHANICAL PROPERTIES OF SOLIDS
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EXERCISE-II (NEET LEVEL)

Q.1 (3)

FL 1

YA A
  l l

Q.2 (3)

2 2

1 1 2
2

2 2 1

L dFL L 1 1 1

AY d L d 2 2 8

   
           

  

l
l l

l

Q.3 (3)

11 –6

mgL 1 10 1.1
m 0.1 mm

AY 1.1 10 10

 
  

 
l

Q.4 (1)

Because due to increase in temperature intermolecular

forces decreases.

Q.5 (3)
Breaking Force Area of cross section of wire (r2)
If radius of wire is double then breaking force will
become four times.

Q.6 (4)

Y is defined for solid only and for fluids, Y = 0

Q.7 (4)

Force
Stress .

area
 l .

In the present case, force applied and area of cross-section
of wires are same, therefore stress has to be the same.

Stress
Strain

Y


Since the Young’s modulus of steel wire is greater than
the copper wire, therefore, strain in case of steel wire
is less than that in case of copper wire.

Q.8 (1)

In the region OA, stress  strain i.e. Hooke’s law hold

good.

Q.9 (4)

As stress is shown on x-axis and strain on y-axis

So we can say that
1 1

Y cot
tan slope

   


So elasticity of wire P is minimum and of wire R is
maximum

Q.10 (3)

Graph between applied force and extension will be
straight line because in elastic range,
Applied force  extension
but the graph between extension and stored elastic
energy will be parabolic in nature

2 2As U 1/ 2 kx or U x . 

Q.11 (4)

Attraction will be minimum when the distance between
the molecule is maximum.
Attraction will be maximum at that point where the

positive slope is maximum because
dU

F
dx

 

Q.12 (3)

Twisting couple
4r

C
2

 


l

If material and length of the wires A and B are equal
and equal twisting couple are applied then

4

1 2
4

2 1

r1

r r

 
    

  

Q.13 (4)

Y = 2 (1 +)

2.4 = 2 (1 +) 1.2 = 1 += 0.2

Q.14 (2)

Angle of shear
–1r 4 10

30º 0.12º
L 100

 
    

Q.15 (3)

Isothermal elasticity K
i
= P

Q.16 (3)

Adiabatic elasticity K = P

Q.17 (2)

p 1 V
B .

V / V B V

 
  


l [p = constant]

Q.18 (3)

Area of hysterisis loop gives the energy loss in the

process of stretching and unstretching of rubber band

and this loss will appear in the form of heating.

Q.19 (4)

Energy stored per unit volume
1

2
 × Stress × Strain
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1

2
 × Young’s modulus × (Strain)2 21

yx
2

Q.20 (4)

21 YA
U .

2 L

 
  

 
l l  2U  l

2 2

2 2
2 1

1 1

U 10
25 U 25U

U 2

   
       

  

l

l

i.e. potential energy of the spring will be 25 V

Q.21 (1)

1
W F 1

2
 l

  W F is constnat  l

1 1

2 2

W 1

W 2 2
   

l l

l l

Q.22 (2)

1 1
W F mg

2 2
   l l

–31
10 10 1 10 0.05 J

2
     

Q.23 (4)

Due to tension, intermolecular distance between atoms
is increased and therefore potential energy of the wire
is increased and with the removal of force interatomic
distance is reduced and so is the potential energy.
This change in potential energy appears as heat in the
wire and thereby increases the temperature.

Q.24 (1)

Increase in energy
–31

20 1 10 0.01J
2

    

Q.25 (1)

Energy per unit volume  
21

Y strain
2

  

2E
strain

Y
 

EXERCISE-III (JEE MAIN LEVEL)

Q.1 (1)

d = 4mm

Y = 9 × 1010 N/m2

F

A
= Y





F =AY




= p(2x10–3)2 x 9 × 109 x
1

100
= p x 4 x 10–6 x 9 × 107 = 360

p N

Q.2 (3)

F / A

/ 
= Y

LOAD

ELONGATION

A

B
C

D

O

2F Y r


 


F 1

Y


 




= r2

 Y & l are same for all then

For same load r a
1



Q.3 (3)

V

V


=

P

B


=

5

11

1 10

1.25 10




= 8×10–7

Q.4 (3)

On heating volume of substance increases while mass

of the substance remains the same. Hence the density

will decrease

Q.5 (4)

K =
AY


, K' =

4AY

/ 2
= 8K

2

2

1
8K

U 2
12 K
2

 


 




U = 16 J
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EXERCISE-IV

Q.1 0010

Stress=
Area

Force
=

A

mg
=

A

g)A( 
= lg

8 × 108 = (8 × 103)l (10)

Q.2 0030

T – mg= ma
T = mg + ma

4104

)ag(800



=

A

T T

=
3

1
× 2.4 × 108 = 8 × 107

(g + a) =
200

108 3
= 40

a = 30 m/s2

Q.3 8

F

1A

F
= y



1

2A

F
= y



 2

1 +2 = 10 mm

yA

F

1


+ yA4

F

1


= 10 mm

yA

F

1


+ yA4

F

1


= 10 mm yA

F

1


= 8 mm.

Q.4 200
P0 + Hg = 3.7 × 106

H × 1.8 × 103 × 10 = 3.6 × 106

H =
18

36
× 102 = 200

Q.5 5

Mg = PA ; A is sectional area
Alqg = 105 A

 =
10102

10
3

5


= 5m

Q.6 0012
We know that

A

F
= Y

l

l


A

mg
= Y

l

l

i.e. m =
g

A
Y

l

l

=
2.310

106.1102)106.0( 31123



 

=
10

36.0 
× 102 = 3.6  

closest mass = 12 kg

Q.7 0250
F – T = 3a
T = 2a

T = 2.5 × 109 × 4 × 10–8

T = 100 N
T = 2a

100 = 2a
a = 50 N
F = 5 × 50

F = 250 N

Q.8 (1)

Work done against the inter molecular forces of attraction

is stored in the wire in the form of elastic potential energy.

Q.9 (1)

For a perfectly plastic body, restoring force is zero. So

stress strain curve is straight line parallel to strain axis.

Young modulus = slope of curve = zero

Q.10 (1)

Compressibility =
1

K

P

VK P
V



  

Q.11 (1)
In a glassy solid or amorphous solid, the various bonds
between particles are not equally strong. So, different
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bonds are broken at different temperature. Hence there
is no sharp melting point.

Q.12 (1)

Bulk modulus of elasticity =
Volumestress

Volumestrain

Modulus of rigidity =
Shearingstress

Shearingstrain

Potential energy of stretched wire

=
1

2
Y × strain2 × volume

9 3 1

y n K
 

Q.13 (3)

PREVIOUS YEAR'S

MHT CET

Q.1 (2) Q.2 (1) Q.3 (1) Q.4 (2) Q.5 (3)

Q.6 (4) Q.7 (4) Q.8 (1) Q.9 (2) Q.10 (4)

Q.11 (1) Q.12 (1) Q.13 (1) Q.14 (4) Q.15 (2)

Q.16 (2) Q.17 (3) Q.18 (2) Q.19 (1) Q.20 (3)

Q.21 (2) Q.22 (4) Q.23 (4) Q.24 (4) Q.25 (2)

Q.26 (3) Q.27 (4) Q.28 (3) Q.29 (3) Q.30 (2)

Q.31 (4) Q.32 (1) Q.33 (2)

NEET/AIPMT

Q.1 (3)

Wire 1:

A, 3I
F

Wire 2 :

3A, I
F

For wire 1,

F
I 3I

AY

 
   

 
....(i)

For wire 2,

F I
Y

3A I

 


F
I I

3AY

 
    

 
....(ii)

From equation (i) & (ii),

F F
I 3I I

AY 3AY

   
     

   

F 9F 

Q.2 (3)

Strain ;
L




stress
Mg

A


Energy
1

stress strain volume
2

   

1 Mg
A L

2 A L
    



1
Mg

2
 

Q.3 (3)

Q.4 (2)
In stretching of a spring shape charges therefore shear
modulus is used.
Y

copper
< Y

steel

Q.5 (2)

v Tension

i i

f f

v T

v T


i

f

v T

v 2T


i

f

v 1 1

v 2 2
 

JEE-MAIN

Q.1 (3)

Given B = 3 × 1010 N/m2

– P
B

V / V





P = (–)
V

B
V




= 3 × 1010 ×
2

100

= 6 × 108 Nm–2

Q.2 (25)

Q.3 (3)

L L

L1 L2F= mg
F= 2mg

m 2m

m 2m

A B

L = (L
1
– L) L = (L

2
– L)
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F =
YA

L
L



F K L 

For (A)

mg = K (L
1
– L) .....(i)

For (B)

2mg = K (L
2
– L) .....(ii)

From Eq.
(ii)

(i)

2

1

L L2

1 L L






1 2L 2L L 

Q.4 (5)
Stress = y strain

2 2

F y FL

r L y r


 

 




2

1

2

F L 4r

4F 4L r

    
    

    





1
2 1

2

1


   



 



2  5 cm

Q.5 (2)
L=1m
L = 0.4 × 10–3m
d = 0.4 × 10–3m

 

 
2

3

mg 1FL
Y

A L d
0.4 10

4


 
 



 
33

40
Y

0.4 10

 

Y = 3 9

40 7

22 64 10 10 



  

Y = 0.199 × 10–12 N/m2

Y F L A ( L

Y F L A L

     
   



L d
2

L d

 
 

0.02 0.01
2

0.4 0.4
  

Y 0.1 0.1
0.1

Y 2 2


  

Y = 0.1 × Y = 0.1 × 0.199 × 1011

10Y 1.99 10 x 2    

102 10

Q.6 (25)

According to Hook’s law,
F

Y
A




l

l

Net pulling force on the elemental mass will be due the
mass lower to it.

F (Force due to lower weight)

F yg
m

l

Let elongation in this elemental mass be d (l)
Then,

 dF
y

A




l

l

mgy
Y

A dy


 

l

l

mgy
dy

lAY
  l

1

0

mgy
dy

LAY
 l =

1

0

mg
ydy

lAY
 

1
2

0

mg Y

lAY 2

 
  

 

mgl

2AY


11

20 10 20

2 0.4 2 10

 


  

=25×10-9
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Q.7 (48)
9 225 10 N / m  

Area = 60 cm × 15 cm
= 900 cm2

4

4

F 18 10
Stress

Area 900 10


 



= 2 × 106

Stress Stress

xQ ( )
h

  

6
9 2 10

25 10 60
x


  

6 5
4

9 9

2 60 10 10
x 12 4 48 10 cm

25 10 10
 

     


x 48 m 

Q.8 (4)
Givenl

1
+l

2
= 1.4 × 10–3m

Or
l

5
+l

c
= 1.4 × 10–3

Or

 

 
23 11

F 3.2

22
1.4 10 2 10

7
  

 

 
3

23 11

F 4.4
1.4 10

22
1.4 10 1.1 10

7





  

  

or F
 F 4.43.2

2 1.1

 
 

 
= 1.4× 1.4× 1.4×102 ×

22

7

Or F(5.6) = 8.6 × 102

Solving F = 154 N

Q.9 (2)
Let us take wire (2) and now

FL
Y

A x



or

L F

A x

 
  

 

Putting values Y =  
25 3

2 2

.5 10 2 10 



 

Solving Y = 2 × 1011

Q.10 (3)

F = A
 

 
 





= 2 × 1011 × 10–4
2  

 
 

 



= 2 × 107N

Q.11 (30)
A = 4mm2 l = 0.5 m m

body
= 2 kg

m2 g = 10 m/s2

strain =
stress



=
F

Ay

F = tension in string

v = 5m/s

m


+ mg

T

l

F =
2m


+ mg

f =
22 5

0.5


+ 2 

Strain = 6 11

120

4 10 10 

= 30  10–5

Q.12 (1)
Y depends on material of wire

Q.13 (50)

2 2
2mv 10 v

T 20v
0.5


  


T
max

= Breaking stress × Area
= 5 × 108 × 10–14 = 5 × 104

20V2 = 5 × 104

41
V 10 50m / s

4
 
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EXERCISE-I (MHT CET LEVEL)

Q.1 (3)
Q.2 (3)
Q.3 (4)
Q.4 (2)

Ice is less denser than water. When ice melts, the volume
occupied by water is less than that of ice. Due to which
the level of water goes down.

Q.5 (2)
Retardation of ball due to buoyant force

w g s g

s

V V 0.4 1
g

v 0.4

  
 



= –1.5 g

Approach velocity of ball 2gh

v2–u2=2ax
02–2×g(9)=2(–1.5 g).x
x=6cm

Q.6 (2)
Q.7 (4)
Q.8 (4)
Q.9 (3)
Q.10 (2)
Q.11 (1)
Q.12 (1)
Q.13 (3)

According to principle of continuity

2

2 2

10( / ) 2( )
80 /

25 10 ( )
x x

y

x

v A m s cm
v m s

A cm


  



Q.14 (1)
According to Bernouli’s theorem

2 2
1 1 2 2

1 1
....( )

2 2
P v P v i   

According to the condition,

5 1
1 2

2

3 10 , 5
A

P P
A

   

From equation of continuity,
A

1
v

1
= A

2
v

2

so,
1 2

2 1

2 1

5 5
A A

v v
A A

   

From equation(i)

 2 2
1 2 2 1

1

2
P P v v  

or  5 2 2
1 1

1
3 10 1000 25

2
v v   

2 2
1 1600 24 25  v v

 v
1
= 5 m/s

Q.15 (2)
Q.16 (1)
Q.17 (1)
Q.18 (3)

The net force acting on the gate element of width dy
a depth y from the surface of the fluid, is.

 0 0dy p + gy–p 1dy  

ydyg 

Torque about the hinge is

PA

F

dy

y

d p ydy× – y
2

 
   

 

l
g

Net torque experienced by the gate is

net d F×
2

   


0

g ydy – y F 0
2 2

 
     

 



 

F
6

g
 

i.e., The force F required to hold the gate stationary

is
6

pg

Q.19 (4)

Apparent weight

= V( – )g = l × b × h × (5 – 1) × g

= 5 × 5 × 5 × 4 × g Dyne = 4 × 5 × 5 × 5 gf.

Q.20 (1)

Fraction of volume immersed in the liquid
inV V

 
  

 

MECHANICAL PROPERTIES OF FLUIDS
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i.e. it depends upon the densities of the block and liquid.

So there will be no change in it if system moves upward

or downward with constant velocity or some

acceleration.

Q.21 (2)
Bernoulli’s theorem for unit mass of liquid

2P 1

2
  


constant

As the liquid starts flowing, it pressure energy
decreases

5 5
2 21 2

3

P P1 1 3.5 10 – 3 10

2 2 10

  
    



2v

5
2

3

2 0.5 10
100 10 m / s

10

 
    

Q.22 (1)

From the Bernoulli’s theorem

     
2 22 2

1 2 2 1

1 1
P P 1.3 120 90

2 2
         
 

= 4095 N/m2 or Pascal

Q.23 (3)

 
2 3

3

2 0.05 73 102AT
F

d 0.01 10





  
 



36.5 115newton  

Q.24 (2)

 22
2 1

0.06 4W s A r r     

=0.003168J

Q.25 (1)
W = TA = 4R2T(n1/3 – 1)
= 4 × 3.14 × (10–2)2 × 460 × 10–3[106/3–1]
=0.057

Q.26 (1)
On increasing the temperature, angle of contact
decreases

Q.27 (1)
Q.28 (1)
Q.29 (4)

Capillary rise,
1

h
r



 h is greater if radius is smaller

Q.30 (2)
Viscosity is also termed as liquid friction. Due to
viscosity, the adjacent layers of a liquid resist, the
relative motion between them.

Q.31 (1)

EXERCISE-II (NEET LEVEL)

Q.1 (3)

As the both points are at the surface of liquid and

these points are in the open atmosphere. So both point

possess similar pressure and equal to 1 atm. Hence

the pressure difference will be zero.

Q.2 (3)

Volume of ice





, volume of water





.

Change in volume
M M 1 1

M
 

    
    

Q.3 (1)

a
A D

B C

Due to acceleration towards right, there will be a

pseudo force in a left direction. So the pressure will be

more on rear side (Points A and B) in comparison with

front side (Point D and C)

Q.4 (4)

Pressure = hg i.e. pressure at the bottom is

independent of the area of the bottom of the tank. It

depends on the height of water upto which the tank is

filled with water. As in both the tanks, the levels of

water are the same, pressure at the bottom is also the

same.

Q.5 (4)

Mercury

G
ly

ce
ri

n
e

10 cm

Oil h

BA

10–h
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At the condition of equilibrium
Pressure at point A = Pressure at point B
P

A
= P

B
 10 × 1.3 × g = h × 0.8 × g + (10 – h) × 13.6 × g

By solving we get h = 9.6 cm

Q.6 (2)
Let specific gravities of concrete and saw dust are 

1

and 
2

respectively.
According to principle of floatation weight of whole
sphere = upthrust on the sphere

3 3 3 3
1 2

4 4 4
(R r ) g r g R 1 g

3 3 3
         

R3
1

– r3 
1

+ r3 
2

= R3

   
3

3 3 1 2
1 1 2 3

1

R
R 1 r

r 1

 
       

 

3 3
1 2 1

3
1

1R r

r 1

   
 

 

 3 3
1 2 1

2
2 1 2

R r 1

r 1

    
   

    

Mass of concrete 1 0.3 2.4
4

Massof saw dust 2.4 1 0.3

 
    

 

Q.7 (2)

V
V g g

2
  

 density of water
2


    

Q.8 (2)

For streamline flow, Reynold’s number R

r
N






should be less. For less value of N
R
, radius and density

should be small and viscosity should be high.

Q.9 (1)
d

A
= 2cm and d

B
= 4 cmr


cm and r

B
= 2 cm

From equation of continuity, av = constant


22
A B B

A B2
B A A

(r ) 2
4

(r ) 1

    
       

    

Q.10 (3)
If the liquid is incompressible then mass of liquid
entering through left end, should be equal to mass of
liquid coming out from the right end.
M = m

1
+ m

2
A

1
= A

2
+1.5A .

A × 3 = 4 × 1.5 + 1.5 A. m/s

Q.11 (1)

Pressure at the bottom of tank
5

2

N
P h g 3 10

m
   

Pressure due to liquid column
P

l
= 3 × 105 – 1 × 105 = 2 × 105

and velocity of water 2gh 

5

3

2P 2 2 10
400 m/s

10

 
   


l

Q.12 (1)
As speed of air above wing is greater,
 pressure is smaller above wing.

Q.13 (2)

Horizontal range will be maximum when
H 90

h
2 2

  =

45 cm i.e. hole 3.

Q.14 (4)
Upthrust – weight of body = apparent weight
VDg – Vdg = Vd,

Where a = retardation of body
D d

g
d

 
   

 

The velocity gained after fall from h height in air,

2gh 

Hence, time to come in rest,

2gh d 2h d
t

(D d)g g (D d)


   
  

Q.15 (4)
Soap helps to lower the surface tension of solution,
thus soap get stick to the dust particles and grease
and these are removed by action of water.

Q.16 (1)
Weight of spiders or insects can be balanced by vertical
component of force due to surface tension.

Q.17 (4)
T = T

0
(1 – t)

Q.18 (3)



T


T

Weight of metal disc = total upward force
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= upthrust force + force due to surface tension

= weight of displaced water + T cos  (2 r)

= W + 2 rT cos 

Q.19 (1)

2

2

F 2 10
T 0.1 N / m

2 2 10 10






  

 l

Q.20 (1)

Energy needed = Increment in surface energy

= (surface energy of n small drops) – (surface energy

of one big drop)

= n4r2T – 4R2T = 4T(nr2 – R2)

Q.21 (1)

When two droplets merge with each other, their surface

energy decreases.

W = T(A)= (negative) i.e. energy is released.

Q.22 (3)

Work done to increase the diameter of bubble from d to D

 2 2 2 2 2W 2 D d T 2 (2D) (D) T 6 D T         

Q.23 (3)

2 2

2 2
2 1

2 1
W 8 T(r r ) 8 T

    
         

      


3

W 8 30 720 erg   


Q.24 (3)

W = 8RT1.

 W  R2 (T is constant)

If radius becomes double then work done will become

four times.

Q.25 (3)

This happens due to viscosity.

Q.26 (2)

Q.27 (2)

Q.28 (2)

Q.29 (3)

Angle of contact is acute.

Q.30 (2)

Both liquids water and alcohol have same nature (i.e.

wet the solid). Hence angle of contact for both is acute.

Q.31 (3)

2 1

1 2

2 cos 1 2

3

h rT
h h

r g r h r


     



1 2

30( , 50
0 2

r r r ofr r
 
     

 
New mass m

2

=

2

2 1 1 1

2 23 2 3 3

2 12 3 2 2
r h r h r h m

    
            

     

Q.32 (c)

2 1

1 2

2 cos 1 2

3

h rT
h h

r g r h r


     



1 2

30( , 50
0 2

r r r ofr r
 
     

 
New mass m

2

=

2

2 1 1 1

2 23 2 3 3

2 12 3 2 2
r h r h r h m

    
            

     

Q.33 (3)
Concept of excess pressure

Q.34 (3)

Since
1

P
R

 

Q.35 (2)
As soap bubble has two free surfaces.

Q.36 (2)

rhdg
S

2cos



1

Pressure difference
2S

hdg cos
r

  

Q.37 (3)
2 2 2

1 2r r r 

r 5cm

Q.38 (3)

3
2

3

2T 2 70 10
P 140 N / m

R 1 10





 
   



Q.39 (b)
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EXERCISE-III (JEE MAIN LEVEL)

Q.1 (1)
F = [rgh] [A]
= (1000) (10) (6) (10) (8).

Q.2 (2)
W

A
> W

B
as mass of water in A is more than in B

P
A

= P
B

Area of A = Area of B
or P

A
Area

A
= P

B
Area

B

or F
A
= F

B
.

Q.3 (2)
GivenA= 2 × 10–3, h = 0.4 m, r = 900 Kg/m3

F = mg = Vrg = (pr2h)rg
= 2 × 10–3 × 0.4 × 900 × 10
= 7.2 N

Q.4 (1)
F = mg
F = 10 N

Q.5 (1)
At same depth pressure is same. So ratio P

1
: P

2
= 1 : 1.

Q.6 (1)

1

1

m g

A =
2

2

m g

A

Solving, m
2
= 3.75 kg.

Q.7 (3)
Given m = 12 kg,A= 800 cm2, r = 1000 kg/m3

P = rgh

mg

A
= rgh

4

12 10

800 10




= 1000 × 10 × h 

12

80
= h

h =
1200

80
= 15 cm

Q.8 (2)
F

b
= rVg – rvg = 0

Q.9 (1)
mg = 60 .................(i)
mg – r

i
vg = 40 .................(ii)

mg vg

mg


=

2

3
or

0


= 3

where r
0

= density of the block and r
l
= density of the

liquid.

Q.10 (3)

103 ×
4

5
+ 13.5 × 103 ×

1

5
= r × 1

or r = 3.5 × 103 kg/m3

Q.11 (3)
[36 – r

l
v

l
]g = [48 – r

l
v

2
]g

i

36
36 g

9

  
    

  
= i

0

48
48 g
  

  
   

Solving, r
0
= 3.

Q.12 (3)
As, weight = Buoyant force
mg = [100 × 6 × 0.6 g] + (100 × 1 × 4)g
 m = 760 gm.

Q.13 (2)
W – v × 1 × g = W

1

W – v × x × g = W
2

 W – (W – W
1
) × x= W

2

x =
2

1

W – W

W – W

Q.14 (2)
V =A..

Now
A g

3


+

K

3


= AA

K = 2Ag

___
3

Kx =

g
3

V

Q.15 (2)
Apparent weight (W

app.
) = W – V 


g

Since, W
app. (Ram)

> W
app. (Shyam)

 W
(Ram)

> W
(Shyam)

Therefore, from given passage shyam has more fat
than Ram.

Q.16 (2)
V

1
> V

2
 W

app. (1)
< W

app. (2)

(Since W
app.

= W – V 

g)

Hence (2)
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Q.17 (3)
R = vt

= 2gD
2(H D)

g



= 2 D(H D) .

Q.18 (2)

F
thrust

= av2

F
net

= F
1
– F

2
= a[2g(h

1
– h

2
)]

= a(2gh)

or F  h

Q.19 (1)

A
1

v
1

= A
2
v

2

R2 dh/dt = r2 v ....(i)

v = 2gh ....(ii)

from equation (ii) put the value of v in equation (i)

R2 dh/dt = r2 2gh



2

2

R dh

r 2gh
 = dt

02

2
h

R dh

r 2g h
 =

t

0

dt

on solving

t = 46.26 second.

Q.20 (2)

A
1
V

1
=A

2
V

2

0.02 × 2 = 0.01 × V
2

V
2
= 4 m/sec.

P
1
+

1

2
V

1
2 = P

2
+

1

2
V

2
2

4 × 104 +
1

2
× 1000 × 22

= P
2
+

1

2
× 1000 × 42  P

2
= 3.4 × 104 N/m2

Q.21 (4)
Force exerted by the water on the corner
= change in momentum in 1 sec

= 2 mv

mv

mv

= 2 vL

Q.22 (3)

H

Na

a

H/2

Force = a  
2

2gh / 2

acceleration =
agh

Na.H




= g/N

Q.23 (2)
AV2 =1000 × 2 × 10–4× (10)2

= 20 N

Q.24 (2)

A
1
V

1
=A

2
V

2
(Given

1

2

r

r =
3

2
)

1

2

v

v =
2

1

A

A =




2
2

2
1

r

r
=

2
2

3

 
 
 

=
4

9

Q.25 (3)

dV
A 2gh

dt


Q.26 (2)
After the portion A is punctured’ the thread has 2
options as shown in the figures.

or
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Clearly, due to surface tension , the soap film wants to
minimize the surface area which is happening in option
(ii).
Hence the thread will become concave towards A.

Q.27 (3)
We know that surface energy
U

S
= T × Area.

Here. as 2 films are formed because of ring. so
U

S
= T × 2 × (A)

= 5
N

m
× 2 × 0.02 m2.= 0.2 J

Q.28 (4)
In the satellite, g

eff
becomes zero but the surface tension

still prevails. Hence the water will experience only
surface Tension force which will push it fully outward.

Q.29 (2)

Water will rise to a height more than h when downward

force (mg
eff

) becomes lesser than mg.

so in a lift accelerating downwards, g
eff

is (g –a
0
). Hence

capillary rise is more.

On the poles g
eff

is even more than g. Hence the

capillary will even drop.

Q.30 (2)

Fs
Fs

h

By balancing forces

T × (2 ) × (cos) = d x  h g

we get h =
2T cos

xdg


.

Q.31 (4)

P
A

has to be equal to P
B
. P

A
= P

0
+ gh .....(i)

Now P
C

– P
0

=
4

r



 soap bubble has 2 films
and P

C
= P

B same air is filled

 P
0

+
4

r


= P

0
+ gh ....(ii)

get  =
ghr

4



Q.32 (4)

Equating pressures on the shaded portion :

1

4

r


–

2

4

r


=

4

R



get R =
2 1

2 1

r r

r r

Q.33 (2)

By equating volume :
3R

3

4
 =

3r
3

4
8 

get r = R/2.

Now pressure difference in A =
R

4

and that in B =
2/R

4
= 2 × pressure difference in A.

Q.34 (3)

P
A

= P
0

+
r

4
; P

B
= P

0
+

R

4
{P

0
= atmospheric

pressure}.

Clearly P
A

> P
B

; so air will flow fromAto B.
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As r decreases; pressure will become more and hence

more flow of air fromA to B.

Ultimately bubble A collapses and B becomes bigger

in size.

Q.35 (1)

P1
Before r

P2

After r/2

Lets say, initially, the pressure due to air inside the
bubble is P

air
.

 P
air

– P
1

=
4T

r
..........(i)

Finally, the radius becomes half ; so volume becomes

8

1
th and hence pressure becomes 8P

air
.

So, 8P
air

– P
2
=

4T

r / 2
.........(ii)

Solving (i) and (ii)

get P
2
= 8P

1
+

24r

r
.

Q.36 (4)
When the excess pressure at the hole becomes equal
to the pressure of water height ;then only water will
start coming out of the holes : [atm pressure on both
sides is same].

 hg =
2

r



 h =
2

rg





=

–3

–3

3

N
2 70 10

m
kg 0.1

1000 10 10
2m

  

 
   
 

= 0.28 m.

Q.37 (3)

x

v

800 =
1.5

A.
x



2400 =A
v

x

v = 4.5 cm /sec.

Q.38 (2)

2
3 34 4

r R
3 3
  

R = 1/ 32 . r

v r2

v 
3/14

Q.39 (4)

V
T

=  
22 r g

9




 
2

0.003 102

9 1.260


 (1260)

v
T

= 0.02 m /sec.

 Time =
0.1

0.02
= 5 sec.

EXERCISE-IV
Q.1 [0050]

1 = tgh2

2gt
2

1
h 

g

h2
t  Þ

g

h2
)h1(g21 

Þ h = 0.5 m = 50 cm

Q.2 [0006]
A1v1 = A2v2

3 × 30 = N × 3 × 10–7 × 0.05

83×10
= N

0.05

N = 6 × 109
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Q.3 [2375]
A

1
v

1
= A

2
v

2

10 × 5 = 5 × v
2

v
2
= 10 m/s

pg

p1
+

g2

v2
1

=
pg

v2
+

g2

v2
2

4
1

10

p
+

20

25
= 4

5

10

102
+

20

100

4
1

10

p
= 25 – 1.25 = 23.75

p
1
= 2375 × 102 Pa

Q.4 [0800]
In both cases, Weight = Bouyant force

Initially, bVg = w

2
V g

3

 
    b =

2

3
w

After wards, bVg = oil

5V
g

6

 
  

 w

2

3
 = oil ×

5

6

 oil =
4

5
w =

4

5
× 100 = 800 kg/m3.

Q.5 [5]
30 – (25 + x0) = 5 – x0

x0

25 + x0 30cm

V =
32

0.4
= 80 cc

A = 16 cm2

kx0 + 103 × 16 × 10–4 × x0 × 10 = 32 × 10–3 × 10
x0 (48 + 16) = 32 × 10–2

x0 =
32

64
cm = 5 mm

Q.6 [0400]

PL × 6 × 102 g = 600 g

mg + 600 g = PL × 1000 g

m = 1000 – 600 = 400 gm

Q.7 [0004]

p =
2s

r
=

BdV

V

V =
4

3
r3

dV = 4r2dr

r

s2
= B ×

2

3

4 r dr

4 / 3 r





dr =
2s

3B
= 8

2 0.075

3 1.25 10



 
=

0.15

3 1.25
× 10–8 = 4Å]

Q.8 [0073]

App. wt. = weight in air

6

6

mg – B + Fsurface = mg

B = Fsurface

103 × 3 × 1.5 × 0.2 × 10–6 × 10

= S ×
6

100
× 2 + S ×

0.2

100
× 2

S =
39 10

12.4


× 100 =

9000

124
N/m

~ 72.59mN/m ~ 73

Q.9 [8]

Mg – T – 6r1v = 0
mg + T – 6r2v = 0

 
)rr(6

grr
3

4

21

2
2

3
1




= v

v =
9

2
(r1

2 – r1r2 + r2
2)



g

mg

T

T

Mg
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T = Mg – 62r1 ×
9

2
(r1

2 – r1r2 + r2
2)



g

=
3

4
r1

3 × g –
3

4
g [r1

3 – r1
2r2 + r2

2r1]

=
3

4
gr [r1

2 r2 – r2
2r1]

=
3

4
rgr1

2














1

2
2

2 r

r
r

2dr

dT
= 0

3

4
gr1

2 0
r

r2
1

1

2 













r1 = 2r2

m

M
= 8

Q.10 [50]

6rv = B =
3

4
r3PL g

 =
9

2
r2

v

gPL

=
9

2
×

7.0

100075.1)9.0( 2 
= 50 poise

Q.11 (1)

As per the Bernoulli theorem, when wind velocity

increases the pressure decreases over the wings and

increases under the wings. This pressure difference

provide the necessary lift.

Q.12 (3)
Cloth has narrow spaces in form of capillaries. Small

angle of contact makes cos.
Larger due to which capillary rise will be more and the
detergent will penetrate more in the narrow pores of

the clothes.

Q.13 (1)

Pressure 
1

area

Paper pins have pointed ends.

Smaller the area greater the pressure which is required

for punching through the surface.

Q.14 (2)

Open-tube manometer is used for measuring pressure
difference.
1 bar = 105 Pascal

Q.15 (4)

(a) Bernoulli’s equation  Principle of mechanical

energy

(b) Continuity equation AV = constant

(c) Pressure head 
P

g

(d) Velocity head 

2v

2g

Q.16 (3)

Viscosity = [M1L–1T–1]

Terminal velocity = [M0L1T–1]

Surface tension = [M1L0T–2]

Surface energy = [M1L2T–2]

PREVIOUS YEAR’S

MHT CET
Q.1 (3) Q.2 (4) Q.3 (1) Q.4 (1) Q.5 (3)
Q.6 (Bouns) Q.7 (1) Q.8 (4) Q.9 (4) Q.10 (3)
Q.11 (2) Q.12 (3) Q.13 (2) Q.14 (4) Q.15 (3)
Q.16 (1) Q.17 (3) Q.18 (3) Q.19 (1) Q.20 (4)
Q.21 (1) Q.22 (2) Q.23 (1) Q.24 (3) Q.25 (2)
Q.26 (4) Q.27 (3) Q.28 (4) Q.29 (3) Q.30 (3)
Q.31 (1) Q.32 (2) Q.33 (2) Q.34 (2) Q.35 (1)
Q.36 (3) Q.37 (4) Q.38 (1) Q.39 (2) Q.40 (1)
Q.41 (3) Q.42 (1) Q.43 (3) Q.44 (4) Q.45 (3)
Q.46 (2) Q.47 (2)

NEET/AIPMT

Q.1 (1)

V 2gh 2 10 2 2 3.14 6.324m / sec      

   6 6d vol
AV 2 10 6.324 12.6 10

dt
     

Q.2 (3)

Pressure inside soap bubble 0

4T
P

R


pressure at a point Z
0

below surface of water

0 0P gZ 

P
0

is atmospheric pressure
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0

4T
gZ

R
 

0

4T
Z

gR



2

0 3 3

4 2.5 10
Z

10 10 1 10





 


  

0Z 1cm

Q.3 (2)
Q.4 (4)
Q.5 (4)

0

4T
P = P +

R

 R increases and P decreases

JEE MAIN

Q.1 (363)

Q.2 (3)

Reynold’s number is given by
vd



Q.3 (300)

25 kg
40 cm

-2 2
0 0

250 1
P + +ρg(40×10 ) = P + ρv

0.5 2

21000×10× 40 1
500 + = ×1000× v

100 2

V = 3 m/s

V = 300 cm/s

Q. 4 (2)

d

4.9 m

t1

t2

v = 2gh = 2×9.8×4.9m / sec

 Total time taken by the ball to reach the bottom of
the lake = t

1
+ t

2
= 4 sec

2
1

1
4.9 = ×9.8× t

2

t
1

= 1 sec and t
2

= 3 sec
since the ball is drowning with constant velocity
d = v × t

2

d = 2×9.8× 4.9 ×3m
d = 9.8 × 3m = 29.4 m

Q.5 (24)

→ →

A
1

A2

v
1

v2

P1

P2

1
2

A
A =

2
P

1
– P

2
= 4500 Pa

2 2
1 1 2 2

1 1
P + ρV +ρgh = P + ρV +ρgh

2 2

2 2
1 2 2 1

1
P - P = ρ(V -V )

2
....(1)

And A
1
V

1
=A

2
V

2

V
2
= 2 V

1
....(2)

2
1

1
4500 = ×750×3V

2
V

1
= 2 m/s

Volume flow rate =A
1
V

1
= 24 × 10-3 m3 s-1

Q.6 (3)

15m

10m

5m

r = 1m

5 N




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Applying Boroulli equation

P
1

+ gh
1

+
1

2
v

1
2 = P

2
+gh

2
+

1

2
v

2
2

5

2

5 10

(1)



 = 1000 
1

2


v
2

2

v
2
= 17.8 m/s

Q.7 (1)

Water

Oil

c

c > 90°
For water oil interface

Q.8 (25)
F

v
+ F

B
= mg (v = constant)

Fv = mg – F
B

= 
B
Vg – 

L
Vg

= (
B
–

L
)Vg

= (8–1.3) × 10+3 ×
3

3

0.3 10
10

8 10






26.7 0.3
10

8


  (g = 10)

467 3
10

8


  = 25.125 × 10–4

Ans. 25.125

Q.9 (2)
Area of cube = 6a2 = 24m2 a  side of cube

a2 = 4  a 2  v
0

= 23 = 8

T = 10°C

 = 5.0 × 10–4
1

C

We know for solid materials  = 3
So = 3 × 5 × 10–4 = 15 × 10–4/°C
V = v

0
.T

V = 8 × 15 × 10–4 × 10 = 1200 × 10–4 m3 = 12 × 10–2 ×
(102)3 cm3

V = 12 × 104 cm3

5 3V 1.2 10 cm  

Q.10 (4)

Initial diameter of ring = 6.230 cm

Final diameter of ring should be

equal to diameter of bangle

 Final diameter of ring = 6.241 cm

Δ1
Using = Δt

1


or

For diameter

ΔD
= ΔT

D


D  change in diameter

 Initial diameter

-56.241- 6.230
= 1.4×10 (T - 27)

6.230


-50.011
= 1.4×10 (T - 27)

6.230


511 10
T 27

6230 1.4


  



 T = 152.7°C

Q.11 (20)
Difference of their length

2 2  =
const.

2 1 0   

2 1  

2 2 1 1T T     

40  1.8  10-5 = 5
1(1.2 10 )

1 = 60 Cm

Q.12 (3)

If the electric field is in the positive direction and the

positive charge is to the left of that point then the electric

field will increase. But to the left of the positive charge

the electric field would decrease.

If the dipole is kept at the point where the electric field

is maximum then the force on it will be zero.

Q.13 (1)

Diameter of Bigger drop = 2 cm

So Radius R = 1 cm

Surface tension = 0.075 N/m

Apply conservation of volume

V
initial

= V
final

3 34 4
πR = 64× πr

3 3
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3
3(1) 1

= r r = cm
64 4



Gain In Energy = {64[Area of small drop]- Area of

Bigdrop} x T

= {64 × 4r2 – 4R2} × T

22
–2 210

= 4π 64 (1 10 ) 0.075
4

   
     
   

= 4× 10–4 {4 – 1} × 0.075

= 2.8 × 10–4J

Q.14 (1)

S × 2r = mg – F
b

= v g –
v

g
2



2
S 2 r vg

2

 
    

 

34 2
S 2 r r g

3 2

 
     

 

 
23s

r
g 2


 

 
  

 
4 2

2

2 3

3 7.5 10 kg m / sec cm
r 1m 100 cm

10m / sec 2 kg m

 
 



 

23 10
r

2 2


 

 

15
r

2


 

Q.15 (3)
Initial surface energy = T.A

  
5

22
i 2

75 10 N
U 4 1 10

m10






     
  

= 75 × 10–3× 4× 10–4 = 942 × 10–7

But
(Volume)

i
= (volume)

f

3 34 4
R 729 r

3 3

 
   

 
(r = final, R = initial)

 
1

3

R R 1
r cm

9 9
729

  

 
25

2
f 2

75 10 N 1
U 729 TA 729 4 10

m 910






    
       

     

4
3 4 10

729 75 10
81


 

   
 

= 9 × 942 × 10–7 J
Gain in surface energy = (9 × 942 – 942) × 10–7

= 8 × 942 × 10–7

= 7536 × 10–7J
= 7.5 × 10–4J

Q.16 (2)
pressure difference
P = P

1
+ P

2

2
1

4T 4T 4T

R r r
 

1 2

1 1 1

2 r r
 

1 1 1

R 3 6
 

R = 2

3cm

6cm

Q.17 (3)

2
2 1

t

gr ( – )2
v

9

 



; v

t
 r2

(
1

= density of air, 
2

= density of rain drops)

Q.18 (100)

Using Newton’s law of viscosity

dv

dy
  

Assuming velocity profile linear with respect to depth

F v

A y


 


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 10–3 = 10–2 ×
36 1000

h 3600





 h = 10–2 × –3

36 1000

10 3600




= 100 m

Q.19 (2)

F
V

= m
g
– F

B
(F

B
= Buoyancy force)

2

1

m
= mg - ×d g

d

 
 
 

2

1

d
= mg 1× g

d

 
 
 

Q.20 (3)

Dimension of pressure × time

force
= × time

Area

 
–2

2

MLT
= × T

l

  

  

= [ML–1 T–1]

Dim. of coeff. of viscosity
dv

F = A η
dz

f dz
η = ×

A dv

 -2

2 –1

LMLT
= ×

L LT      

= [ML–1 T–1]

A is true because

R is false coeff. of viscosity
forec

=
Area × vel.gradient

Reason R : Coefficient of viscosity
Force

=
velocitygradient

Q.21 (4)

Fv=6 rvπη t

Mg=4 r gπ ρ3

vt

3

3
t

4
6πηrv = πr ρg

3

3

t

4 πr ρg
v

3 6πηr
 

12 3

5

2 10 10 10

9 1.8 10





  


 

6123.4 10 m / s 

Q.22 (20)

ball

h

liquid

If the speed if ball does not change after entering into

liquid that means the speed attained by ball was equal

to terminal speed

22 r
= 2gh = (σ - ρ)g

9 η

r = 0.1 × 10–3 m , –Ns m–2

g = 10 ms–2

–6
4 3

–5

2 0.01×10
2×10× h = × (10 –10 )×10

9 10


–8

–5

2 10
20 9000 10

9 10
h    

–8 4 520h = 2×10 ×10 ×10

20h 20 

20h = 400

 h = 20 m

=20

Q.23 (11)

As the bubble is rising steadily the net force acting on

it will be zero (Because of density of air the value of mg

can be neglected.)
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So, B = F 
34

R g
3


 = 6 Rv

Putting R = 1 mm = 10–3 m

 = 1.75 × 103 kg/m3

g = 10 m/s2

v = 0.35 × 10–2 m/s

10
1.11SI unit

9
   = 11 poise (CGS)

Q.24 (25)
F

v
+ F

B
= mg (v = constant)

Fv = mg – F
B

= 
B
Vg – 

L
Vg

= (
B
–

L
)Vg

= (8–1.3) × 10+3 ×
3

3

0.3 10
10

8 10






26.7 0.3
10

8


  (g = 10)

467 3
10

8


  = 25.125 × 10–4

Ans. 25.125
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EXERCISE-I (MHT CET LEVEL)

Q.1 (1)
Thermal stress = Y
= 1.2 × 1011 × 1.1 × 10–5 × (20 – 10) = 1.32 × 107 N/m2

Q.2 (1)
Let final temperature of mix be TºC
Heat gained = Heat lost
m

i
C

i
(T– 0) + m

i
L

i
= m

w
c

w
(80 – T)

 
1 336

1 T 1 1 1 80 T
2 4.2
       

336 T
80 –T

4.2 2
 

T 0º C 

Q.3 (4)
The change of state from liquid to vapour (for gas) is
called vapourisation. It is observed that when liquid is
heated, the temperature remains constant untill the
entire amount of the liquid is converted into vapour.
The temperature at which the liquid and the vapour
states of the substance coexists is called its boiling
point.

Q.4 (a)

Q.5 (a)

Q.6 (d)

Q.7 (c)

Q.8 (d)

Q.9 (2)

200 0.75
6000

1

Q KA

t l

  
  

6000 1
40º

200 0.75
C


  



Q.10 (2)
High conductivity is desired to ensure greater transfer
of heat to the food.
Low specific heat is required so that temperature of
pot rises even with small amount of heat.

Q.11 (3)

Heat current in first rod (copper)
390 A(0 ) 




Here  is temperature of the junction and A &  are

area and length of copper rod. Heat

current in second rod (steel)
46 A( 100) 




In series combination, heat current remains same. So,

390 A(0 ) 46 A( 100)    


 

390 46 4600   

436 4600 10.6 C    
Q.12 (1)

 
 

   

   

4 44 4
1 01

4 44 4
2 2 0

600 300

500 300

T TE

E T T





 
 

 

Q.13 (1)

Q.14 (1)

Q.15 (3)

Q.16 (1)

Q.17 (2)

Q.18 (4)

Q.19 (3)
According to the Stefan-Boltzmann law states that
power radiated by a perfectly black body is
P = AT4

 PT4

Q.20 (4)
Stefan’s law for black body radiation

 

4

1/4

2

2

4

Here 1

4

Q eAT

Q
T

R

e

A R



 





 
 
  




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Q.21 (3)
According to wien’s displacement law,


m
T = constant.


1

T
 

 Wavelength of radiation emitted by body depends
upon the temperature of its surface.

Q.22 (3)
Q.23 (1)
Q.24 (2)
Q.25 (1)
Q.26 (2)
Q.27 (3)
Q.28 (3)
Q.29 (2)
Q.30 (1)
Q.31 (3)

Total energy radiated from a body Q = AT4t
Q AT4 r2T4 (A= 4r2)



2 4

P P P

Q Q Q

Q r T

Q r T

   
       
   

=

42
8 (273 127)

1
2 (273 527)

  
  

   

Q.32 (1)
According to Wein’s law 

m
T = constant


1 2m 1 m 2T T   

1

2

m 0
2 1 1 1

m 0

4
T T T T

3 4 3

 
   
 

Now PT4 

4

2 2

1 1

P T

P T

 
  
 



4

2 1

1 1

P 4 3T 256

P T 81

 
  
 

EXERCISE-II (NEET LEVEL)

Q.1 (4)
Increase in tension of wire = YA
= 8 × 10–6 × 2.2 × 1011 × 10–2 × 10–4 × 5 = 8.8 N

Q.2 (3)
F =YAt = 2 × 1011 × 3× 10–6 × 10–5 × (20 –10) = 60 N

Q.3 (4)

Q.4 (4)
Thermal capacity = m × c

= 40 × 0.2 = 8 cal/°C

Q.5 (2)
Resultant temperature is 0°C while ice will not melt.

Q.6 (1)
Heat gained by the water = (Heat supplied by the coil)
– (Heat dissipated to environment)

coil Lossmc P t P t   

 32 4.2 10 77 27 1000 160t t      

54.2 10
500 8min 20

840
t s s


   

Q.7 (4)

Utensil should have low thermal resistan ce R
KA

 
 

 



and low specific heat so that heat loss is less

Q.8 (3)

1
2

1 1 1

22
2

2 2

R K A 9K (2r)
2R 8

K (3r)K A


  



 

 

  =
T

R




1

R

so
1 2

2 1

R 8

R 9


 



Q.9 (4)

Radius of small sphere = r Thickness of small sphere =
t Radius of bigger sphere = t/4 Mass of ice melted =
(volume of sphere) × (density of ice) Let K

1
and K

2
be

the thermal conductivities For bigger sphere.

3
2

1

4
(2 r)

4 (2 r) 100 3
/ 4 25 60

pL
K

t


 




For smaller sphere,

3
2

2

4
4 100 3

16 60

r pL
K r

t


  




1

2

8

25

K

K
 

Q.10 (4)
Q.11 (2)

1

1

Q

t =
1Hi =

100 0

2R


=

50

R
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i
H2

=
100

R / 2
=

200

R
=

2

2

Q

t

Q
1
= Q

2
= 10 cal.

50
(2)

R
 = 2

200
t

R


t
2
=

1

2
min.

Q.12 (2)

Equivalent thermal circuit

Req = R1 + R2 =
2

KA


=

1 2K A K A


 
 K =

1 2

1 2

2K K

K K

Q.13 (3)

Equivalent thermal circuit

eq 1 2

1 1 1

R R R
  

eqK 2A KA 2KA
 

  

 eq

3
K K

2


Q.14 (4)

Q KA

t




l


2

A B B

B A B

K A r 1

K A r 4

 
   

 
 B

A

K
K

4


Q.15 (3)

Temperature of interface : 1 1 2 2 2 1

1 2 2 1

K K

K K

  
 



l l

l l
=

K 0 2 3K 100 1

K 2 3K 1

    

  
=

300K

5K
= 60°C

Q.16 (2)
By Newton’s law of cooling

1 2 1 2
2 ...(1)

2
k

t

      
     

A sphere cools from 62°C to 50°C in 10
min,

0

62 50 62 50

10 2
k

  
    

... (2)

Now, sphere cools from 50°C to 42°C in
next 10min.

0

50 42 50 42
...(3)

10 2
k

  
     

Dividing eqn, (2) by (3) we get,

0
0

0

56
0.4 10.4

46

 
  

 

Hence 
0
= 26°C

Q.17 (4)
Q.18 (3)
Q.19 (1)
Q.20 (2)

Because of uneven surfaces of mountains, most of it’s
parts remain under shadow. So, most of the mountains.
Land is not heated up by sun rays. Besides this, sun
rays fall slanting on the mountains and are spread over
a larger area. So, the heat received by the mountains
top per unit area is less and they are less heated
compared to planes (Foot).

Q.21 (1)

Q.22 (2)

2 1 1

1
m m m

2

T 2000

T 3000
    

1m m

2 2

3 3
   

Q.23 (1)

4

1 1

2 2

E T

E T

 
  
 



4

2

E 273 0

E 273 273

 
  

 
E

2
= 16 E

Q.24 (1)

4E T 
4

41

4
2

E T
2

E T
   2

E
E

16


Q.25 (4)

4

2 2

1 1

E T

E T

 
  
 



4 4
2 420 273 673

1 T T

   
    
   

T = 21/4 × 673 = 800 K
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Q.26 (2)
Liquid having more specific heat has slow rate of
cooling because for equal masses rate of cooling

d 1

dt c


 .

Q.27 (3)

60 50 60 50
K 25

10 2

  
  

 
…..(i)

50 50
K 25

10 2

   
  

 
…..(ii)

On dividing, we get

10 60

50


  
= 42.85°C

Q.28 (3)
In first case

60 40 60 40
K 10

7 2

  
  

 
.....(i)

In second case

40 28 40 28
K 10

t 2

  
  

 
….(ii)

By solving t = 7 minutes

EXERCISE-III (JEE MAIN LEVEL)

Q.1 (3)
Given L = 1 mm,L = 6 × 10-5 mm
 = 12 × 10-6 k-1

then
L = LT
6 × 10–5 mm = (1mm) (12 × 10–6)T
T = 5°C

Q.2 (3)
I = CMR2

dI = 2CMRdR = 2CMR [RT] = 2IT
Q.3 (2)

F =AY
L

L


=AYYT

f = K
F AY T

K
A




 

 f 
Y



Q.4 (3)


1
(1 +

1
T) + 

2
(1 +

2
T) = 

f


f
= 

1
+ 

2
+ (

1


1
+ 

2


2
)T


f
= (

1
+ 

2
) 1 1 2 2

1 2

1 T
   
  

 

 

  .

Q.5 (4)


oil
= 

vessel
D.

Volume increases but mass remains same.

Q.6 (3)
 

m
< 

Al


m
>> 

ac

V
m

<V
al

So completely Immersed


m
< 

Al
So W

2
> W

1
[Displaced

mass of alchol is less]

Q.7 (3)

PV = nRT V =
nR

P
T

V =
V

T
T

So ,  =
1

T

Q.8 (3)
L =L

1
+L

2

(3L)
net
t = Lt = (2L) (2)t

net

4 5

3 3

   
  

Q.9 (1)
On heating the expansion will take place hence both
the distances will increase.

Q.10 (4)
at 0°C

V
0x

= 20A; V
0y

= 30A
Now at time T y read 120°C
So. V’

0y
=A(120) = 30A(1 + 

m
T)

and V’
0x

=Ah = 20A (1 + 
m

T)

Dividing
120 30

h 20


 h = 80.
Q.11 (4)

mc= m
i
L m

i
=

mc

L



Q.12 (4)
From the data given
S

A


A
(8V) = (12V)

B
s

B

A B

B A

s 12

s 8




 =
3 2000

2 1500
 = 2

Q.13 (4)

 dQ = msdT 
dT

dQ
=

1

ms
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Solid

Liquid

vapour

Q.14 (2)

36º
A B
KA KB

T
O

d d

K
A

= 2K
B

= 2 K

36 – T

d

 
 
 

K
A
A =

T – 0

d

 
 
 

K
B
A

(36 – T) 2 K = T K

T =
3

72
= 24

T = temp diff = 36 – 24 = 12

Q.15 (3)

i
H

=
eq

T

R


=

1 2

700 – 100

R R

Where R
eq

= R
1
+ R

2
=

0.24

0.9 400
+

0.02

0.15 400

i
H

=
dQ

dt
=

Q

t




=

m.L

t





m

t




= Hi

L
where L = 540 cal/gm ; t = 3600 sec.

Q.16 (4)

dT
i kA

dx
 

dT

dx


1

K

 i and A are same for both the layers.
i = – kA (dT/dx)
i and A are constant hence slope
dT/dx = –i/(kA) is – ve but
Slope (1/k)
Hence in air slope will be more – ve due to very less
conductivity.

Q.17 (2)

A B C

i =01 2

iBC

1

D

iDB

i
BC

= i
DB


1

kA(90 – 20)

 =
2

kA(20 – 0)



1

2

7

2






Q.18 (2)
The heat current is equal to required latent heat of
fusion per unit time.

i =
icedm

dt
. L

f
=

kA(100)



k =
ice fdm L

.
dt A(100)


= 60 Wm–1 k–1

Q.19 (3)
i = –kA dT / dx
Slope dT/dx = – i/kA is – ve but due to radiation loss
because of not lagged, as we move ahead current i will
be less. Hence slope wil be more – ve to less – ve.

Q.20 (1)

p

100 0
T 50

2


  

As T
P

> T
Q

so flow is from P to Q.

Q

30 60
T 45

2


  

Q.21 (3)

Initially i =
dm

dt
. L

f
= kR2.

100



Hence
2dm kR

dt




From given condition

2

2

2
1

k (2R)dm
4 / 2dt

dm kR

dt

 
 
 




Thermal Properties of Matter



73PHYSICS

2dm

dt 2
0.1

 
2dm

0.2
dt



Q.22 (1)
Req. is same for both the rods and same temperature
same difference so i

1
= i

2

Q.23 (1)
P

emitte
=  eAT4

since T
1

= T
2

P
absorb

=  eAT
S

4

MH MS

T T
M < MH S

Hollow Solid

So, P
1
= P

2
at t = 0

cooling rate
dT

dt

 
 
 

=
4 4

S

eA
[T T ]

mS




since M
H

< M
S

, so cooling rate will be different since
cooling rate is not same so both will not have same
temp at any instant t (except t = 0)

Q.24 (3)

p QdT dT
– x –

dt dt

 
  

 



4 4
p 0

p

eA (T – T )

m S


=

4 4
Q 0

Q

xe A (T – T )

m S





2 3
p Q

Q p

A m r 3r
x

A m 3r r

   
     

   

 x = 3

Q.25 (2)
Initially the temperature of the substance increases and
then phase change from ice to water occurs & this
process continues.

Q.26 (4)

Area = ydx =
dE

d dE
d

  
 

Area (1) = E =T4 =

4
b 

 
 

4

1 2

2 1

Area

Area

 
  

 


1

9
=

4

2

1

 
 
 


1

2

3





Q.27 (2)

Using relation 
max


1

T

max

max

NSS

NS S

T 350
0.69

T 510


  


Q.28 (2)
Using formula
P = eAT4

P
P

= 
P
 (1) 

P
4 and P

Q
= 

Q
A

Q
4

Now P
P

= P
Q

 
   

  

1/ 4

Q

Q P

p

Q.29 (4)

i =
d

ms
dt


= msk (50°–20°) = 10 W

..(1)

and
35.1– 34.9

60
= k (35 –20)

...(2)

from (1) & (2)

0.2

60
=

10

ms(30) × 15

ms = 1500 J/°C

Q.30 (1)
If the body cools from 

1
to 

2
then using formula

1 2

t

  
=

1 2
0

2

   
   
 

75 – 65

5
= k

75 65
– 25

2

 
 
 

2 = K(70 – 25)
2

K
45



Now
65 – x

5
=

65 x
k – 25

2

 
 
 

2 (65 – x) = 5k (65 + x – 50)

130 – 2x = 5 ×
2

45
(15 + x)

x= 57°c
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EXERCISE-IV

Q.1 [0023]

1 =
10030

065.0



2 =
10030

035.0


l = l1a1T + (30 – l1) 2 T

0.058 = l1 ×
3000

065.0
+ (30 – l1) ×

3000

035.0

1.74 = 0.065 l1 + 1.05 – 0.035l,
0.69 = +0.03l1
l1 = 23 cm ; l2 = 7 cm

Q.2 [0200]
 = T




=T

b =
A

T
=



y
= yT  T =





y
b

=

511

8

10102

104



= 200°C

Q.3 [250]
d = dT  6 × 10–4 = 1 × 12 × 10–6 ×T

T = 50°CT
f
= 70°C

21 × 570 × 50 = m × 540 × 4200 + m × 4200 × (100 – 70)

m =
3042004200540

50450021




=

4

1
kg = 250 gm

Q.4 [0001]
V =Vm –Vpt
= V(2 – 1)T

V

V
= (18 – 2.7) × 10–5 T = (15.3 × 10–5)T

T = 5103.15

)V/V(



= 1

Q.5 [1000]

dt

dE
= ATT4

 T4 =
)1067.5()05.0(4

)1067.5(
82

2




= 1012

A = 4r2

 T = 1000 K

Q.6 [1000]

P = AT4 , T =

1/ 4
P 

 
 

T = 1000 K

Q.7 [0001]
64 =T4 (2rl)

r = 10–5 m = 10 mm)

Q.8 [0060]
140 × 1(80 – T) = 10 × 80 × 2 + 20 × 1 (T – 0)
140 × 80 – 1600 = 160 T
T = 60°C

Q.9 [600]
By conservation of heat energy
m

A
S

A
T

A
= m

w
S

w
T

w

m
A

=
AA

www

TS

TSm




=

30140

)10)(4200)(60(


= 600 kg

Q.10 [0004]
25(1 + 6.96 × 10–6 T) = 25.04 [1 – 2.5 × 10–5 (100 – T)]
25 + 174 × 10–6 T = 25.04 – 626 × 10–4 + 626 × 10–6 T
0.0226 = 452 × 10–5 T
T = 50°
msph (0.230) (100 – T) = mRing (0.092) (50)

ring

sph

m

m10

= 4

Q.11 (2)

9
F C 32

5
 

for T = F = C

T =
9

5
T + 32

4
T 32

5
 

T = –40°

Q.12 (2)
According to Kirchoff’s law,
e

= E


· a



e

a



But e

 a


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Q.13 (2)
Rate of loss due to radiation

4Q T

4

42 2

1 1

Q T
2 16

Q T

 
   
 

Specific heat varies with the temperature

Q.14 (2)
Water evaporates at all temperatures
Specific heat of water is highest among all liquids.

Q.15 (2)
Factual

Q.16 (1)
(a) Stefan’s Boltzman law
E = ST4

(b) Kirchoff’s law,
e

= E


a


(c) Newton’s law,

0

d
( )

dt


  

(d) Wien’s displacement law,


m
T = b

PREVIOUS YEAR’S

MHT CET

Q.1 (4)

Q.2 (2)

Q.3 (2)
Q.4 (4)

Given, h
1
= 50 cm T

1
= 50°C

h
2
= 60 cm, T

2
= 100° C

Let the density of the given liquid at STP be 
0
, if both

vertical columns balance each other, then their pres-
sure should be equal.
i.e., p = gh


1
gh

1
=

2
gh

2


1 1

2 2

h

h






If r be the coefficient of absolute expansion of liquid,

then,
0 0

1 2

1 2

and
1 rT 1 rT

 
   

 

From Eq. (i) we have

0

11

0 2

2

h 601 rT

h 50
1 rT




 






1

2 1

2

1 rT 6
5rT 6rT 1

1 rT 5


   



1
r 0.005 / C

200
   

Q.5 (3)
The fractional change in time period is given by

T 1

T 2


 

T
T

2


  

Here, T = 1day = (24 × 60 × 60)s = 86400 s
= 1.2 × 10–5/°C,= 20 – 15 = 5°C


586400 1.2 10 5

T 2.6s
2

  
  

Q.6 (2)
Q.7 (3)
Q.8 (1)

For the principle of calorimetry,
m

1
s

1
T

1
= m

2
s

2
T

2

540 × s
w

(80-T) = 540 ×
ws

2
× (T - 0)

where, s
w

is speciffic heat of water.

160
T C 53.3 C

3
    

Q.9 (2)
Let mass of the bullet be m gram, then total heat re-
quired for bullet to just melt down
Q

1
= mcT + mL

=m×(0.03) (327 - 27)+m×6
= 15 m - cal
=(16m×4.2)J
Now, when bullet is struck by obstacles, the loss in its
mechanical energy

 3 21
m 10 v

2
 

The energy absorbed by bullet,

2 3
2

72 1
Q mv 10

100 2
  

=
2 33

mv 10 J
8



Now, the bullet will melt if 2 1Q Q

i.e.,
2 33

mv 10 15m 4.2
8

  

 v
min

= 410 m/s

Q.10 (3)
Q.11 (3)
Q.12 (2)
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Q.13 (3)
Q.14 (1)
Q.15 (1)

Q.16 (2)

Q.17 (4)
Q.18 (3)
Q.19 (2)

Q.20 (3)
Q.21 (2)
Q.22 (4)

According to Newton’s law of cooling,

1 2 1 2
0

T T T T
K T

2 2

  
  

 

365 361 365 361
K 293

2 2

  
   

1
K

35
 

Again,
344 342 1 344 342 10

293
t 35 2 7

  
    

t =
14

min 84s
10



Q.23 (2)

Since, heat transfer,
 1 2KA T T t

Q
L

 


The equivalent thermal resistance in series i.e joined
end-to-end is

eq 1 2

1 1 1 1 1

K K K K K
   

 eq

eq

1 2 K
K

K K 2
  

K K

The equivalent thermal resistance in parallel i.e when
they are joined one above another,

'
eqK = K

1
+ K

2
= K + K = 2K

K

K

According to question,
Q

2
= Q

1


  12
K / 2 t2Kt

L 2L



1

2

t t
t s

8 8
  [ t

1
= t]

Q.24 (2)
From Stefan’s law, the total radiant energy emitted per
second per unit surface area of a black body is

proportional to the fourth power of the absolute
temperature (T) of the body.

 4E T 
Where  is Stefan’s constant.
Given, E

1
= R

 T
1
= 273°C = 273 + 273 = 546 K

and T
2
= 0°C = 273K



4 4
1 1 2

2 14 4
2 2 1

E T T
E E

E T T
   

 
 

4

2 4

273 R
E R

16546
  

Q.25 (4)
The activity of a radioactive sample is given by

1/2 1/2

t t

T T

0

0

1 A 1
A A

2 A 2

   
     

   

Given,
0A

A
32

 and t = 1h

1/2

1

T1 1

32 2

   
    

   
or

1/2

1
5

T

1/ 2

1 1 1
5

2 2 T

   
     

   

or 1/ 2

1 60
T h min 12 min

5 5
  

NEET/AIPMT

Q.1 (2)
V

escape
= 11200 m/s

On solving,
T = 8.360 × 104 K

Q.2 (1)
We know,
max T = constant (Wien’s law)

So,
1 2max 1 max 2T T  

0
0

3
T T

4


  

4
T T

3
 

So,

4 4
2

1

P T 4 256

P T 3 81

   
     
   

Q.3 (2)
In adiabatic process Q = 0

Q.4 (4)

 1
Cu Cu Cu1 T    ..(i)
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 1
Al Al Al1 T    ..(ii)

Equation (2) - equation (1)

 1 1
Al Cu Al Al Al Cu Cu CuT T             

 1 1
Al Cu Al Cu Al Al Cu Cu T            

When increases in length is not depend on tempera-
ture.

Cu Cu Al Al   

1.7 × 10–5× 88 = 2.2 × 10–5× Al

Al 68cm

Q.5 (4)
Q.6 (1)
Q.7 (3)

V = (no. of moles) (22.4 litre)

=
mass

molar mass
(22.4 × 10–3 m3)

=
34.5 10

18


× 22.4 × 10–3 m3

= 5.6 m3

JEE MAIN
Q.1 (2)

Area of cube = 6a2 = 24m2 a  side of cube

a2 = 4  a 2  v
0

= 23 = 8

T = 10°C

 = 5.0 × 10–4
1

C

We know for solid materials  = 3
So = 3 × 5 × 10–4 = 15 × 10–4/°C
V = v

0
.T

V = 8 × 15 × 10–4 × 10 = 1200 × 10–4 m3 = 12 × 10–2 ×
(102)3 cm3

V = 12 × 104 cm3

5 3V 1.2 10 cm  

Q.2 (4)
Initial diameter of ring = 6.230 cm
Final diameter of ring should be
equal to diameter of bangle
 Final diameter of ring = 6.241 cm

Δ1
Using = Δt

1


or
For diameter

ΔD
= ΔT

D


D  change in diameter

 Initial diameter

-56.241- 6.230
= 1.4×10 (T - 27)

6.230


-50.011
= 1.4×10 (T - 27)

6.230


511 10
T 27

6230 1.4


  



 T = 152.7°C

Q.3 (20)
Difference of their length

2 2  =
const.

2 1 0   

2 1  

2 2 1 1T T     

40  1.8  10-5 = 5
1(1.2 10 )

1 = 60 Cm

Q.4 (3)

21 1
Mv = msΔT

4 2

 
 
 

21
×1.5×(60) = 0.1× 420×ΔT.......

8

 3s = 0.42J / gº C = 0.42×10 J / kgº C = 420J / kgº C

1 15
× ×60×60 = 42×ΔT

8 10

15 × 15 × 3 = 42T

225×3
ΔT =

42

225
ΔT = =16.07 º C

14

Q.5 (31)
Heat rejected per/min = mL

f
+ mST

= (50 × 540) + 50 (1) (100 – 20)
= 31000 Cal = 31 × 103 Cal

Q.6 (3)

5kg T=500°C

S
cu

= 0.39
J

g C
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L
f
= 335

J

gm

When block is placed on ice block then heat will
transferred from Cu block to ice then

loss gainH H  

(ms
cu

.T) = (m
ice

L
f
)

5000 × 0.39 × 500 = m
ice

× 335

5
5

ice

25 10 0.39 9.75
m 10

335 335

 
  

3
icem 2.9 10 gm 2.9kg  

Q.7 (42)
m = 2000 gm / min
Heat required by water / min = mST
= (2000) × 4.2 × 40 J/min
=336000 J/min

dm
L = 336000 J/ min

dt

 
 
 

The rate of combustion 3

dm 336000
g/ min.

dt 8×10
 

= 42 gm / min.

Q.8 (2)

m × 125 × 200 + m × 2.5 × 104 21 40
= mv ×

2 100

V = 500 m/s

Q.9 (90)

T = 25°C

T = 0°CIce

300g

120g

L = Latent heat of ice
Heat absorbed = Heat transmitted

m × L m C D T

mass of ice
which has

been melted

mass
of water

specific
heat

capacity

charge into
temperature

(m)
melted

× (3.5 × 105) = 300 × 4200 × (25)
(m

ice
)

melted
= 90

Q.10 (2)
Heat will be gained by the container through
conducting walls and with that heat the ice will melt.

Heat gained by container =
dq T

KA
dt x




And totalarea=2(60 ×50 +50 ×20 +20×60)=10400cm2

x=1cm

K = 0.05Wm-1ºC-1

Now,

T dm
KA L

x dt




dm KA T

dt L x


 

5 2

dm 0.05 10400 40

dt 3.4 10 1 10 10000

 
 

   
61×10–5 kg/sec

Q.11 (16)

T
i
– Ts = 60

80 – T
s
= 60 T

s
= 20

T
1
– T

s
= 40 T

2
– T

s
= 20

T
1
– 20 = 40 T

2
– 20 = 20

T
1
= 60 T

2
= 40

2

80 - 60
k(50) 56 = =

60 - 40 k(30) 3

t - 6

210 ( 6) 5

3 20 3

t 
 

t
2
– 6 = 10

t
2
= 16 min.

Q.12 (3)

(1) 0

dQ
K(T T )

dt
  here T – T

0
= T

dQ
K T

dt
  If T is twice then

dQ

dt
will be 2 times

(2) IT
4

44
P

4
Q

I (273 10) 283
0.92

I 293(273 20)

  
   

  


(3)
2

1

T 100 3
1 1

T 400 4
     


3

% 100 75%
4

   

(4)
dQ

T
dt

 

Statements A and C are correct
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Q.13 (2)

100°C

80°C

0°C

16cm 8cm

According to given condition of steady state heat
current aresameinbothmetallicblocks, M

1
& M

2

I
1
= I

2
(current are same in both rod) ....(1)

A
1

= A
2

Formula of heat current dQ KA( T)
I

dt L


  ....(2)

equation (1) to
1 2K A(100 C – 80 C) K A(80 C – 0 C)

16cm 8cm

   


1 2K (20 C) K (80)

16 8




K
1
= 8K

2

K
1
= 8K

Q.14 (21)

4.0 cm 2.5 cm

0°2KK

A B

100°C

Area of cross section = 120 cm2

Equivalent thermal conductivity

5
1 K
 
  

R
eq

= R
1
+ R

2
R =

L

kA

1 2 1 2

eq 1 2

(L L ) L L1

K A K A K A


 

1 2 1 2

eq 1 2

L L L L

K K K


  

eq

4 2.5 4 2.5

K k 2k


 

eq

6.5 10.5

K 2K



eq

=
65 2

105


=

130 26

105 21


K
eq

=
26 5

1 K
21 21

 
  
 

1 5 5
1

21


 





Q.15 (3)

T1 T2

I2I1

T

CopperSteel

T1 = 450°C T 2 = 0°C

1 2

2 1

A K2 9
;

A 1 K 1
  and

1

2

L 2

L 1
 (given data)

In steady state  I
1

= I
2

1 2

1 2

T T T T

R R

 


1 1 2 2

1 2

(450 T)K A (T 0)K A

L L

 
 

2 2 1

1 1 2

K A L450 T
· ·

T K A L


 

450 T 1
9 2 9

T 2


   

450 T
9 450 T 9T

T


   

450= 10T
T = 45°

Thermal Properties of Matter


